These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 30093670)

  • 21. Steps of the coupled charge translocation in the catalytic cycle of cytochrome c oxidase.
    Siletsky SA
    Front Biosci (Landmark Ed); 2013 Jan; 18(1):36-57. PubMed ID: 23276908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pumping of protons from the mitochondrial matrix by cytochrome oxidase.
    Wikström M
    Nature; 1984 Apr 5-11; 308(5959):558-60. PubMed ID: 6324002
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation.
    Smirnova IA; Adelroth P; Gennis RB; Brzezinski P
    Biochemistry; 1999 May; 38(21):6826-33. PubMed ID: 10346904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping.
    Wikström M
    Nature; 1989 Apr; 338(6218):776-8. PubMed ID: 2469960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The H channel is not a proton transfer path in yeast cytochrome c oxidase.
    Malkamäki A; Meunier B; Reidelbach M; Rich PR; Sharma V
    Biochim Biophys Acta Bioenerg; 2019 Sep; 1860(9):717-723. PubMed ID: 31374214
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular architecture of the proton diode of cytochrome c oxidase.
    Brzezinski P; Reimann J; Adelroth P
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1169-74. PubMed ID: 19021518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The design features cells use to build their transmembrane proton gradient.
    Gunner MR; Koder R
    Phys Biol; 2017 Feb; 14(1):013001. PubMed ID: 28169227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the role of the K-proton transfer pathway in cytochrome c oxidase.
    Brändén M; Sigurdson H; Namslauer A; Gennis RB; Adelroth P; Brzezinski P
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5013-8. PubMed ID: 11296255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force.
    Brown GC
    J Biol Chem; 1989 Sep; 264(25):14704-9. PubMed ID: 2549030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site.
    von Ballmoos C; Gonska N; Lachmann P; Gennis RB; Ädelroth P; Brzezinski P
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3397-402. PubMed ID: 25733886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient.
    Blomberg MRA; Siegbahn PEM
    Biochim Biophys Acta; 2015 Mar; 1847(3):364-376. PubMed ID: 25529353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic control of proton pumping in cytochrome c oxidase.
    Fadda E; Yu CH; Pomès R
    Biochim Biophys Acta; 2008 Mar; 1777(3):277-84. PubMed ID: 18177731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional effects of mutations in cytochrome c oxidase related to prostate cancer.
    Namslauer I; Dietz MS; Brzezinski P
    Biochim Biophys Acta; 2011 Oct; 1807(10):1336-41. PubMed ID: 21334999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase.
    Wikström M; Krab K; Sharma V
    Chem Rev; 2018 Mar; 118(5):2469-2490. PubMed ID: 29350917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton-translocating cytochrome c oxidase in artificial phospholipid vesicles.
    Krab K; Wikström M
    Biochim Biophys Acta; 1978 Oct; 504(1):200-14. PubMed ID: 30478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria.
    Maréchal A; Xu JY; Genko N; Hartley AM; Haraux F; Meunier B; Rich PR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9349-9355. PubMed ID: 32291342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.