These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 30093867)

  • 1. Autophagy Dysfunction and Oxidative Stress, Two Related Mechanisms Implicated in Retinitis Pigmentosa.
    Moreno ML; Mérida S; Bosch-Morell F; Miranda M; Villar VM
    Front Physiol; 2018; 9():1008. PubMed ID: 30093867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of the mechanisms of cone degeneration in retinitis pigmentosa.
    Narayan DS; Wood JP; Chidlow G; Casson RJ
    Acta Ophthalmol; 2016 Dec; 94(8):748-754. PubMed ID: 27350263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic
    Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL
    J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-syndromic retinitis pigmentosa.
    Verbakel SK; van Huet RAC; Boon CJF; den Hollander AI; Collin RWJ; Klaver CCW; Hoyng CB; Roepman R; Klevering BJ
    Prog Retin Eye Res; 2018 Sep; 66():157-186. PubMed ID: 29597005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress of treatment strategies for retinitis pigmentosa].
    Qian TW; Xu X
    Zhonghua Yan Ke Za Zhi; 2017 Feb; 53(2):148-153. PubMed ID: 28260368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa.
    Gallenga CE; Lonardi M; Pacetti S; Violanti SS; Tassinari P; Di Virgilio F; Tognon M; Perri P
    Antioxidants (Basel); 2021 May; 10(6):. PubMed ID: 34073310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinitis Pigmentosa (RP): The Role of Oxidative Stress in the Degenerative Process Progression.
    Vingolo EM; Casillo L; Contento L; Toja F; Florido A
    Biomedicines; 2022 Mar; 10(3):. PubMed ID: 35327384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroinflammation as a Therapeutic Target in Retinitis Pigmentosa and Quercetin as Its Potential Modulator.
    Ortega JT; Jastrzebska B
    Pharmaceutics; 2021 Nov; 13(11):. PubMed ID: 34834350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor actin dysregulation in syndromic and non-syndromic retinitis pigmentosa.
    Megaw R; Hurd TW
    Biochem Soc Trans; 2018 Dec; 46(6):1463-1473. PubMed ID: 30464047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing the progression of retinitis pigmentosa via photoreceptor interactions.
    Camacho ET; Wirkus S
    J Theor Biol; 2013 Jan; 317():105-18. PubMed ID: 23063618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentric retinitis pigmentosa: clinicopathologic correlations.
    Milam AH; De Castro EB; Smith JE; Tang WX; John SK; Gorin MB; Stone EM; Aguirre GD; Jacobson SG
    Exp Eye Res; 2001 Oct; 73(4):493-508. PubMed ID: 11825021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention.
    Bighinati A; Adani E; Stanzani A; D'Alessandro S; Marigo V
    Front Cell Neurosci; 2024; 18():1343544. PubMed ID: 38370034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GLO1 gene polymorphisms and their association with retinitis pigmentosa: a case-control study in a Sicilian population.
    Donato L; Scimone C; Nicocia G; Denaro L; Robledo R; Sidoti A; D'Angelo R
    Mol Biol Rep; 2018 Oct; 45(5):1349-1355. PubMed ID: 30099685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nutraceutical Strategy to Slowing Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa.
    Piano I; D'Antongiovanni V; Testai L; Calderone V; Gargini C
    Front Neurosci; 2019; 13():461. PubMed ID: 31156364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vascular dysfunction in retinitis pigmentosa.
    Lang M; Harris A; Ciulla TA; Siesky B; Patel P; Belamkar A; Mathew S; Verticchio Vercellin AC
    Acta Ophthalmol; 2019 Nov; 97(7):660-664. PubMed ID: 31099494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthocyanin can arrest the cone photoreceptor degeneration and act as a novel treatment for retinitis pigmentosa.
    Tao Y; Chen T; Yang GQ; Peng GH; Yan ZJ; Huang YF
    Int J Ophthalmol; 2016; 9(1):153-8. PubMed ID: 26949626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models.
    Sánchez-Vallejo V; Benlloch-Navarro S; Trachsel-Moncho L; López-Pedrajas R; Almansa I; Romero FJ; Miranda M
    Free Radic Biol Med; 2016 Jul; 96():245-54. PubMed ID: 27140233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations Into Bioenergetic Neuroprotection of Cone Photoreceptors: Relevance to Retinitis Pigmentosa.
    Narayan DS; Chidlow G; Wood JPM; Casson RJ
    Front Neurosci; 2019; 13():1234. PubMed ID: 31803010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic studies on retinal tissue from a donor with a dominantly inherited chorioretinal degeneration resembling sectoral retinitis pigmentosa.
    Hollyfield JG; Frederick JM; Tabor GA; Ulshafer RJ
    Ophthalmology; 1984 Feb; 91(2):191-6. PubMed ID: 6709333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased TRPM-2/clusterin mRNA levels during the time of retinal degeneration in mouse models of retinitis pigmentosa.
    Wong P; Borst DE; Farber D; Danciger JS; Tenniswood M; Chader GJ; van Veen T
    Biochem Cell Biol; 1994; 72(9-10):439-46. PubMed ID: 7605616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.