These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 30094533)
21. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP. Schindler C; Rippmann F; Kuhn D J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792 [TBL] [Abstract][Full Text] [Related]
22. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015. Kumar A; Zhang KY J Comput Aided Mol Des; 2016 Sep; 30(9):685-693. PubMed ID: 27484214 [TBL] [Abstract][Full Text] [Related]
23. Performance evaluation of molecular docking and free energy calculations protocols using the D3R Grand Challenge 4 dataset. Elisée E; Gapsys V; Mele N; Chaput L; Selwa E; de Groot BL; Iorga BI J Comput Aided Mol Des; 2019 Dec; 33(12):1031-1043. PubMed ID: 31677003 [TBL] [Abstract][Full Text] [Related]
24. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2. da Silva Figueiredo Celestino Gomes P; Da Silva F; Bret G; Rognan D J Comput Aided Mol Des; 2018 Jan; 32(1):75-87. PubMed ID: 28766097 [TBL] [Abstract][Full Text] [Related]
25. Predicting the affinity of Farnesoid X Receptor ligands through a hierarchical ranking protocol: a D3R Grand Challenge 2 case study. Réau M; Langenfeld F; Zagury JF; Montes M J Comput Aided Mol Des; 2018 Jan; 32(1):231-238. PubMed ID: 28913743 [TBL] [Abstract][Full Text] [Related]
26. Docking-undocking combination applied to the D3R Grand Challenge 2015. Ruiz-Carmona S; Barril X J Comput Aided Mol Des; 2016 Sep; 30(9):805-815. PubMed ID: 27709317 [TBL] [Abstract][Full Text] [Related]
27. Workflows and performances in the ranking prediction of 2016 D3R Grand Challenge 2: lessons learned from a collaborative effort. Gao YD; Hu Y; Crespo A; Wang D; Armacost KA; Fells JI; Fradera X; Wang H; Wang H; Sherborne B; Verras A; Peng Z J Comput Aided Mol Des; 2018 Jan; 32(1):129-142. PubMed ID: 28986733 [TBL] [Abstract][Full Text] [Related]
28. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation. Grudinin S; Kadukova M; Eisenbarth A; Marillet S; Cazals F J Comput Aided Mol Des; 2016 Sep; 30(9):791-804. PubMed ID: 27718029 [TBL] [Abstract][Full Text] [Related]
29. Predicting protein-ligand binding modes for CELPP and GC3: workflows and insight. Xu X; Ma Z; Duan R; Zou X J Comput Aided Mol Des; 2019 Mar; 33(3):367-374. PubMed ID: 30689079 [TBL] [Abstract][Full Text] [Related]
30. Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0. Shin WH; Kihara D J Comput Aided Mol Des; 2019 Dec; 33(12):1083-1094. PubMed ID: 31506789 [TBL] [Abstract][Full Text] [Related]
31. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015. Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018 [TBL] [Abstract][Full Text] [Related]
32. Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2. Kurkcuoglu Z; Koukos PI; Citro N; Trellet ME; Rodrigues JPGLM; Moreira IS; Roel-Touris J; Melquiond ASJ; Geng C; Schaarschmidt J; Xue LC; Vangone A; Bonvin AMJJ J Comput Aided Mol Des; 2018 Jan; 32(1):175-185. PubMed ID: 28831657 [TBL] [Abstract][Full Text] [Related]
33. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. Slynko I; Da Silva F; Bret G; Rognan D J Comput Aided Mol Des; 2016 Sep; 30(9):669-683. PubMed ID: 27480696 [TBL] [Abstract][Full Text] [Related]
34. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2. Kadukova M; Grudinin S J Comput Aided Mol Des; 2018 Jan; 32(1):151-162. PubMed ID: 28913782 [TBL] [Abstract][Full Text] [Related]
35. Impact of domain knowledge on blinded predictions of binding energies by alchemical free energy calculations. Mey ASJS; Jiménez JJ; Michel J J Comput Aided Mol Des; 2018 Jan; 32(1):199-210. PubMed ID: 29134431 [TBL] [Abstract][Full Text] [Related]
36. D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions. Gathiaka S; Liu S; Chiu M; Yang H; Stuckey JA; Kang YN; Delproposto J; Kubish G; Dunbar JB; Carlson HA; Burley SK; Walters WP; Amaro RE; Feher VA; Gilson MK J Comput Aided Mol Des; 2016 Sep; 30(9):651-668. PubMed ID: 27696240 [TBL] [Abstract][Full Text] [Related]
37. Improved pose and affinity predictions using different protocols tailored on the basis of data availability. Prathipati P; Nagao C; Ahmad S; Mizuguchi K J Comput Aided Mol Des; 2016 Sep; 30(9):817-828. PubMed ID: 27714493 [TBL] [Abstract][Full Text] [Related]
38. Convolutional neural network scoring and minimization in the D3R 2017 community challenge. Sunseri J; King JE; Francoeur PG; Koes DR J Comput Aided Mol Des; 2019 Jan; 33(1):19-34. PubMed ID: 29992528 [TBL] [Abstract][Full Text] [Related]
39. The role of human in the loop: lessons from D3R challenge 4. Stroganov OV; Novikov FN; Medvedev MG; Dmitrienko AO; Gerasimov I; Svitanko IV; Chilov GG J Comput Aided Mol Des; 2020 Feb; 34(2):121-130. PubMed ID: 31965405 [TBL] [Abstract][Full Text] [Related]
40. DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015. Salmaso V; Sturlese M; Cuzzolin A; Moro S J Comput Aided Mol Des; 2016 Sep; 30(9):773-789. PubMed ID: 27638810 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]