These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 30094643)
1. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643 [TBL] [Abstract][Full Text] [Related]
2. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Jin XJ; Peng HS; Hu HB; Huang XQ; Wang W; Zhang XH Sci Rep; 2016 Jun; 6():27393. PubMed ID: 27273243 [TBL] [Abstract][Full Text] [Related]
4. Metabolic Engineering of Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542 [TBL] [Abstract][Full Text] [Related]
5. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Peng H; Ouyang Y; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jan; 17(1):9. PubMed ID: 29357848 [TBL] [Abstract][Full Text] [Related]
6. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
7. Lon protease downregulates phenazine-1-carboxamide biosynthesis by degrading the quorum sensing signal synthase PhzI and exhibits negative feedback regulation of Lon itself in Pseudomonas chlororaphis HT66. Wang Z; Huang X; Jan M; Kong D; Wang W; Zhang X Mol Microbiol; 2021 Aug; 116(2):690-706. PubMed ID: 34097792 [TBL] [Abstract][Full Text] [Related]
8. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042 [TBL] [Abstract][Full Text] [Related]
9. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340 [TBL] [Abstract][Full Text] [Related]
10. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Chin-A-Woeng TF; van den Broek D; de Voer G; van der Drift KM; Tuinman S; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV Mol Plant Microbe Interact; 2001 Aug; 14(8):969-79. PubMed ID: 11497469 [TBL] [Abstract][Full Text] [Related]
11. Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain. Moreno-Avitia F; Utrilla J; Bolívar F; Nogales J; Escalante A Appl Microbiol Biotechnol; 2020 Dec; 104(23):10119-10132. PubMed ID: 32984920 [TBL] [Abstract][Full Text] [Related]
12. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18. Wan Y; Liu H; Xian M; Huang W Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873 [TBL] [Abstract][Full Text] [Related]
14. Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66. Guo S; Wang Y; Wang W; Hu H; Zhang X Microb Cell Fact; 2020 May; 19(1):105. PubMed ID: 32430011 [TBL] [Abstract][Full Text] [Related]
15. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72. Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795 [TBL] [Abstract][Full Text] [Related]
16. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439 [TBL] [Abstract][Full Text] [Related]
17. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309 [TBL] [Abstract][Full Text] [Related]
18. Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Li Y; Jiang H; Xu Y; Zhang X Appl Microbiol Biotechnol; 2008 Jan; 77(6):1207-17. PubMed ID: 18064455 [TBL] [Abstract][Full Text] [Related]
19. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409 [No Abstract] [Full Text] [Related]
20. Production of Antibacterial Questiomycin A in Metabolically Engineered Guo S; Hu H; Wang W; Bilal M; Zhang X J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224 [No Abstract] [Full Text] [Related] [Next] [New Search]