BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 30094643)

  • 41. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05.
    Chen L; Wang Y; Miao J; Wang Q; Liu Z; Xie W; Liu X; Feng Z; Cheng S; Chi X; Ge Y
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7825-7839. PubMed ID: 34562115
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391.
    van Rij ET; Girard G; Lugtenberg BJJ; Bloemberg GV
    Microbiology (Reading); 2005 Aug; 151(Pt 8):2805-2814. PubMed ID: 16079356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis.
    Sharma PK; Munir RI; de Kievit T; Levin DB
    Can J Microbiol; 2017 Dec; 63(12):1009-1024. PubMed ID: 28982015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in
    Jin ZJ; Zhou L; Sun S; Cui Y; Song K; Zhang X; He YW
    ACS Synth Biol; 2020 Jul; 9(7):1802-1812. PubMed ID: 32584550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium.
    Chen Y; Shen X; Peng H; Hu H; Wang W; Zhang X
    Genom Data; 2015 Jun; 4():33-42. PubMed ID: 26484173
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis.
    Girard G; Rigali S
    Microbiology (Reading); 2011 Feb; 157(Pt 2):398-407. PubMed ID: 21030433
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84.
    Yu JM; Wang D; Pierson LS; Pierson EA
    Microbiology (Reading); 2017 Jan; 163(1):94-108. PubMed ID: 27926818
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Secondary Metabolites Production and Plant Growth Promotion by
    Shahid I; Rizwan M; Baig DN; Saleem RS; Malik KA; Mehnaz S
    J Microbiol Biotechnol; 2017 Mar; 27(3):480-491. PubMed ID: 27974729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide.
    Zhou L; Jiang HX; Sun S; Yang DD; Jin KM; Zhang W; He YW
    World J Microbiol Biotechnol; 2016 Mar; 32(3):50. PubMed ID: 26873561
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phenazine and 1-Undecene Producing
    Tagele SB; Lee HG; Kim SW; Lee YS
    J Microbiol Biotechnol; 2019 Jan; 29(1):66-78. PubMed ID: 30415529
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition of Three Potato Pathogens by Phenazine-Producing
    Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M
    mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of a β-galactosidase-gene-based fusion is convenient for screening candidate genes involved in regulation of pyrrolnitrin biosynthesis in Pseudomonas chlororaphis G05.
    Luo W; Miao J; Feng Z; Lu R; Sun X; Zhang B; Ding W; Lu Y; Wang Y; Chi X; Ge Y
    J Gen Appl Microbiol; 2019 Jan; 64(6):259-268. PubMed ID: 29806629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm-1 against peanut stem rot.
    Liu F; Yang S; Xu F; Zhang Z; Lu Y; Zhang J; Wang G
    BMC Microbiol; 2022 Jan; 22(1):9. PubMed ID: 34986788
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05.
    Zhang B; Wang Y; Miao J; Lu Y; Lu R; Sun X; Luo W; Chi X; Feng Z; Ge Y
    J Basic Microbiol; 2018 Sep; 58(9):793-805. PubMed ID: 29995319
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G.
    He L; Xu YQ; Zhang XH
    Biotechnol Bioeng; 2008 Jun; 100(2):250-9. PubMed ID: 18078294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity.
    Li J; Yang Y; Dubern JF; Li H; Halliday N; Chernin L; Gao K; Cámara M; Liu X
    PLoS One; 2015; 10(9):e0137553. PubMed ID: 26379125
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391.
    van Rij ET; Wesselink M; Chin-A-Woeng TF; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2004 May; 17(5):557-66. PubMed ID: 15141960
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology.
    Zhou Q; Su J; Jiang H; Huang X; Xu Y
    Appl Microbiol Biotechnol; 2010 May; 86(6):1761-73. PubMed ID: 20155354
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Economical Production of Phenazine-1-carboxylic Acid from Glycerol by
    Li YX; Yue SJ; Zheng YF; Huang P; Nie YF; Hao XR; Zhang HY; Wang W; Hu HB; Zhang XH
    Biology (Basel); 2023 Sep; 12(10):. PubMed ID: 37887002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced Fluorescent Siderophore Biosynthesis and Loss of Phenazine-1-Carboxamide in Phenotypic Variant of
    Liu Y; Wang Z; Bilal M; Hu H; Wang W; Huang X; Peng H; Zhang X
    Front Microbiol; 2018; 9():759. PubMed ID: 29740409
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.