BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30094842)

  • 1. The Importance of Venous Return in Starling-Like Control of Rotary Ventricular Assist Devices.
    Stephens AF; Gregory SD; Salamonsen RF
    Artif Organs; 2019 Mar; 43(3):E16-E27. PubMed ID: 30094842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of an adaptive Starling-like controller for dual rotary ventricular assist devices.
    Stephens A; Gregory S; Tansley G; Busch A; Salamonsen R
    Artif Organs; 2019 Nov; 43(11):E294-E307. PubMed ID: 31188476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preload-based Starling-like control of rotary blood pumps: An in-vitro evaluation.
    Mansouri M; Gregory SD; Salamonsen RF; Lovell NH; Stevens MC; Pauls JP; Akmeliawati R; Lim E
    PLoS One; 2017; 12(2):e0172393. PubMed ID: 28212401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.
    Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D
    Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological principles of Starling-like control of rotary ventricular assist devices.
    Stephens AF; Gregory SD; Burrell AJC; Marasco S; Stub D; Salamonsen RF
    Expert Rev Med Devices; 2020 Nov; 17(11):1169-1182. PubMed ID: 33094673
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps.
    Ng BC; Smith PA; Nestler F; Timms D; Cohn WE; Lim E
    Ann Biomed Eng; 2017 Mar; 45(3):567-579. PubMed ID: 27543069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Comparison of Active and Passive Physiological Control Systems for Biventricular Assist Devices.
    Pauls JP; Stevens MC; Schummy E; Tansley G; Fraser JF; Timms D; Gregory SD
    Ann Biomed Eng; 2016 May; 44(5):1370-80. PubMed ID: 26283049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starling-like flow control of a left ventricular assist device: in vitro validation.
    Gaddum NR; Stevens M; Lim E; Fraser J; Lovell N; Mason D; Timms D; Salamonsen R
    Artif Organs; 2014 Mar; 38(3):E46-56. PubMed ID: 24372519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preload-based starling-like control for rotary blood pumps: numerical comparison with pulsatility control and constant speed operation.
    Mansouri M; Salamonsen RF; Lim E; Akmeliawati R; Lovell NH
    PLoS One; 2015; 10(4):e0121413. PubMed ID: 25849979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of preload-sensitive pressure and flow controller strategies for a dual device biventricular support system.
    Gaddum NR; Timms DL; Stevens M; Mason D; Lovell N; Fraser JF
    Artif Organs; 2012 Mar; 36(3):256-65. PubMed ID: 21955295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frank-starling control of a left ventricular assist device.
    Stevens MC; Gaddum NR; Pearcy M; Salamonsen RF; Timms DL; Mason DG; Fraser JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1335-8. PubMed ID: 22254563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive control of a biventricular assist device with compliant inflow cannulae.
    Gregory SD; Pearcy MJ; Timms D
    Artif Organs; 2012 Aug; 36(8):683-90. PubMed ID: 22882438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preload Sensitivity with TORVAD Counterpulse Support Prevents Suction and Overpumping.
    Gohean JR; Larson ER; Longoria RG; Kurusz M; Smalling RW
    Cardiovasc Eng Technol; 2019 Sep; 10(3):520-530. PubMed ID: 31187397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical foundations of a Starling-like controller for rotary blood pumps.
    Salamonsen RF; Lim E; Gaddum N; AlOmari AH; Gregory SD; Stevens M; Mason DG; Fraser JF; Timms D; Karunanithi MK; Lovell NH
    Artif Organs; 2012 Sep; 36(9):787-96. PubMed ID: 22626056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise studies in patients with rotary blood pumps: cause, effects, and implications for starling-like control of changes in pump flow.
    Salamonsen RF; Pellegrino V; Fraser JF; Hayes K; Timms D; Lovell NH; Hayward C
    Artif Organs; 2013 Aug; 37(8):695-703. PubMed ID: 23638682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.