BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30094842)

  • 21. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart.
    Salamonsen RF; Mason DG; Ayre PJ
    Artif Organs; 2011 Mar; 35(3):E47-53. PubMed ID: 21355872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices.
    Gregory SD; Schummy E; Pearcy M; Pauls JP; Tansley G; Fraser JF; Timms D
    Artif Organs; 2015 Feb; 39(2):102-9. PubMed ID: 25041754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A variable gain physiological controller for a rotary left ventricular assist device.
    Silva LFV; Cordeiro TD; Lima AMN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5606-5609. PubMed ID: 34892395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implantable physiologic controller for left ventricular assist devices with telemetry capability.
    Asgari SS; Bonde P
    J Thorac Cardiovasc Surg; 2014 Jan; 147(1):192-202. PubMed ID: 24176267
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergy of first principles modelling with predictive control for a biventricular assist device: In silico evaluation study.
    Koh VCA; Yong Kuen Ho ; Stevens MC; Salamonsen RF; Lovell NH; Lim E
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1291-1294. PubMed ID: 29060112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Load-independent analysis of a pulsatile right ventricular assist device.
    Meyers CH; Peterseim DS; Uppal R; Jayawant AM; Campbell KA; Sabiston DC; Smith PK; Van Trigt P
    J Heart Lung Transplant; 1995; 14(1 Pt 1):177-85. PubMed ID: 7727467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.
    Lim E; Salamonsen RF; Mansouri M; Gaddum N; Mason DG; Timms DL; Stevens MC; Fraser J; Akmeliawati R; Lovell NH
    Artif Organs; 2015 Feb; 39(2):E24-35. PubMed ID: 25345482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standardized Comparison of Selected Physiological Controllers for Rotary Blood Pumps: In Vitro Study.
    Petrou A; Lee J; Dual S; Ochsner G; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Mar; 42(3):E29-E42. PubMed ID: 29094351
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Habigt MA; Gesenhues J; Ketelhut M; Hein M; Duschner P; Rossaint R; Mechelinck M
    Biomed Tech (Berl); 2021 Jun; 66(3):257-266. PubMed ID: 34062635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro and in vivo characterization of three different modes of pump operation when using a left ventricular assist device as a right ventricular assist device.
    Stevens MC; Gregory SD; Nestler F; Thomson B; Choudhary J; Garlick B; Pauls JP; Fraser JF; Timms D
    Artif Organs; 2014 Nov; 38(11):931-9. PubMed ID: 24660783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological control of implantable rotary blood pumps for heart failure patients.
    Bakouri MA; Salamonsen RF; Savkin AV; Alomari AH; Lim E; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():675-8. PubMed ID: 24109777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of Physiological Control Systems for Rotary Left Ventricular Assist Devices: An In-Vitro Study.
    Pauls JP; Stevens MC; Bartnikowski N; Fraser JF; Gregory SD; Tansley G
    Ann Biomed Eng; 2016 Aug; 44(8):2377-2387. PubMed ID: 26833037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Interaction Between Ventricular Assist Device Assistance and Autoregulated Mock Circulation Including Frank-Starling Mechanism and Baroreflex.
    Jansen-Park SH; Mahmood MN; Müller I; Turnhoff LK; Schmitz-Rode T; Steinseifer U; Sonntag SJ
    Artif Organs; 2016 Oct; 40(10):981-991. PubMed ID: 26582749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pitfalls in the development of a rotary blood pump controller.
    Konishi H; Misawa Y; Fuse K; Sohara Y
    ASAIO J; 2001; 47(4):397-400. PubMed ID: 11482493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the transmitted flow pulse in a rotary left ventricular assist device.
    Gaddum NR; Fraser JF; Timms DL
    Artif Organs; 2012 Oct; 36(10):859-67. PubMed ID: 22845793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of the Fluid Viscosity in a Mock Circulation.
    Boës S; Ochsner G; Amacher R; Petrou A; Meboldt M; Schmid Daners M
    Artif Organs; 2018 Jan; 42(1):68-77. PubMed ID: 28718516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control strategy for maintaining physiological perfusion with rotary blood pumps.
    Giridharan GA; Skliar M
    Artif Organs; 2003 Jul; 27(7):639-48. PubMed ID: 12823419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pulmonary Valve Opening With Two Rotary Left Ventricular Assist Devices for Biventricular Support.
    Wu EL; Nestler F; Kleinheyer M; Stevens MC; Pauls JP; Fraser JF; Gregory SD
    Artif Organs; 2018 Jan; 42(1):31-40. PubMed ID: 28741841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of a physiological controller for ventricular assist devices during acute patho-physiological events: an in vitro study.
    Petrou A; Pergantis P; Ochsner G; Amacher R; Krabatsch T; Falk V; Meboldt M; Daners MS
    Biomed Tech (Berl); 2017 Nov; 62(6):623-633. PubMed ID: 28182575
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.