These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 30094919)

  • 1. Cold signaling in plants: Insights into mechanisms and regulation.
    Guo X; Liu D; Chong K
    J Integr Plant Biol; 2018 Sep; 60(9):745-756. PubMed ID: 30094919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Deng C; Ye H; Fan M; Pu T; Yan J
    Plant Signal Behav; 2017 May; 12(5):e1316442. PubMed ID: 28414264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the regulation of C-repeat binding factors in plant cold signaling.
    Liu J; Shi Y; Yang S
    J Integr Plant Biol; 2018 Sep; 60(9):780-795. PubMed ID: 29667328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures.
    Guo Y; Xiong L; Ishitani M; Zhu JK
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7786-91. PubMed ID: 12032361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice.
    Ito Y; Katsura K; Maruyama K; Taji T; Kobayashi M; Seki M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell Physiol; 2006 Jan; 47(1):141-53. PubMed ID: 16284406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process.
    Kim JY; Kim WY; Kwak KJ; Oh SH; Han YS; Kang H
    J Exp Bot; 2010 May; 61(9):2317-25. PubMed ID: 20231330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Regulation of CBF Signaling in Cold Acclimation.
    Shi Y; Ding Y; Yang S
    Trends Plant Sci; 2018 Jul; 23(7):623-637. PubMed ID: 29735429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of grain size by G protein signaling in rice.
    Xu R; Li N; Li Y
    J Integr Plant Biol; 2019 May; 61(5):533-540. PubMed ID: 30597738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold signal transduction and its interplay with phytohormones during cold acclimation.
    Shi Y; Ding Y; Yang S
    Plant Cell Physiol; 2015 Jan; 56(1):7-15. PubMed ID: 25189343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana.
    Zhuang L; Yuan X; Chen Y; Xu B; Yang Z; Huang B
    PLoS One; 2015; 10(7):e0132928. PubMed ID: 26177510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance.
    Huang L; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice.
    Chen L; Zhao Y; Xu S; Zhang Z; Xu Y; Zhang J; Chong K
    New Phytol; 2018 Apr; 218(1):219-231. PubMed ID: 29364524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance.
    Bevilacqua CB; Basu S; Pereira A; Tseng TM; Zimmer PD; Burgos NR
    PLoS One; 2015; 10(7):e0132100. PubMed ID: 26230579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Lee BH; Henderson DA; Zhu JK
    Plant Cell; 2005 Nov; 17(11):3155-75. PubMed ID: 16214899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins.
    Cabello JV; Arce AL; Chan RL
    Plant J; 2012 Jan; 69(1):141-53. PubMed ID: 21899607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis.
    Ding Y; Li H; Zhang X; Xie Q; Gong Z; Yang S
    Dev Cell; 2015 Feb; 32(3):278-89. PubMed ID: 25669882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Early Cold-Regulated Proteins by Two-Dimensional Difference Gel Electrophoresis Reveals a Key Role for Phospholipase Dα1 in Mediating Cold Acclimation Signaling Pathway in Rice.
    Huo C; Zhang B; Wang H; Wang F; Liu M; Gao Y; Zhang W; Deng Z; Sun D; Tang W
    Mol Cell Proteomics; 2016 Apr; 15(4):1397-411. PubMed ID: 26747563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions.
    Kim JY; Kim WY; Kwak KJ; Oh SH; Han YS; Kang H
    Plant Cell Environ; 2010 May; 33(5):759-68. PubMed ID: 20088860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis.
    Kim YS; Lee M; Lee JH; Lee HJ; Park CM
    Plant Mol Biol; 2015 Sep; 89(1-2):187-201. PubMed ID: 26311645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.