These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30094988)

  • 81. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy.
    Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.
    Li Y; Leung K; Qi Y
    Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Overlooked Factors Required for Electrolyte Solvents in Li-O
    Nishioka K; Tanaka M; Fujimoto H; Amaya T; Ogoshi S; Tobisu M; Nakanishi S
    Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202112769. PubMed ID: 35076163
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Plane-Selective Coating of Li
    Kim H; Choi G; Kim S; Lee D; Doo SW; Park J; Lee WB; Lee KT
    J Phys Chem Lett; 2020 Sep; 11(17):7096-7102. PubMed ID: 32787329
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Flexible lithium-oxygen battery based on a recoverable cathode.
    Liu QC; Xu JJ; Xu D; Zhang XB
    Nat Commun; 2015 Aug; 6():7892. PubMed ID: 26235205
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Suppressing Singlet Oxygen Formation during the Charge Process of Li-O
    Lin Y; Yang Q; Geng F; Feng H; Chen M; Hu B
    J Phys Chem Lett; 2021 Oct; 12(42):10346-10352. PubMed ID: 34665633
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Operando NMR characterization of a metal-air battery using a double-compartment cell design.
    Gauthier M; Nguyen MH; Blondeau L; Foy E; Wong A
    Solid State Nucl Magn Reson; 2021 Jun; 113():101731. PubMed ID: 33823328
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synergistic Effect of Binary Electrolyte on Enhancement of the Energy Density in Li-O
    Hase Y; Nishioka K; Komori Y; Kusumoto T; Seki J; Kamiya K; Nakanishi S
    J Phys Chem Lett; 2020 Sep; 11(18):7657-7663. PubMed ID: 32830981
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Unlock Restricted Capacity via OCe Hybridization for LiOxygen Batteries.
    Sun Z; Zhao X; Qiu W; Sun B; Bai F; Liu J; Zhang T
    Adv Mater; 2023 Apr; 35(14):e2210867. PubMed ID: 36691313
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Stable Lithium-Oxygen Battery Electrolyte Based on Fully Methylated Cyclic Ether.
    Huang Z; Zeng H; Xie M; Lin X; Huang Z; Shen Y; Huang Y
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2345-2349. PubMed ID: 30589170
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Revealing the Correlations between Morphological Evolution and Surface Reactivity of Catalytic Cathodes in Lithium-Oxygen Batteries.
    Shen ZZ; Zhang YZ; Zhou C; Wen R; Wan LJ
    J Am Chem Soc; 2021 Dec; 143(51):21604-21612. PubMed ID: 34874155
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Mechanism and performance of lithium-oxygen batteries - a perspective.
    Mahne N; Fontaine O; Thotiyl MO; Wilkening M; Freunberger SA
    Chem Sci; 2017 Oct; 8(10):6716-6729. PubMed ID: 29147497
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multifunctional Catalyst CuS for Nonaqueous Rechargeable Lithium-Oxygen Batteries.
    Ding S; Liu S; Li J; Wu L; Ma ZF; Yuan X
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50065-50075. PubMed ID: 34643393
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Understanding and Suppressing the Destructive Cobalt(II) Species in Graphite Interphase.
    Wang K; Xing L; Xu K; Zhou H; Li W
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31490-31498. PubMed ID: 31364838
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Unlocking the passivation nature of the cathode-air interfacial reactions in lithium ion batteries.
    Zou L; He Y; Liu Z; Jia H; Zhu J; Zheng J; Wang G; Li X; Xiao J; Liu J; Zhang JG; Chen G; Wang C
    Nat Commun; 2020 Jun; 11(1):3204. PubMed ID: 32587338
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide.
    Wang Y; Lu YC
    Angew Chem Int Ed Engl; 2019 May; 58(21):6962-6966. PubMed ID: 30903671
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Graphitic Hollow Nanocarbon as a Promising Conducting Agent for Solid-State Lithium Batteries.
    Park SW; Oh G; Park JW; Ha YC; Lee SM; Yoon SY; Kim BG
    Small; 2019 May; 15(18):e1900235. PubMed ID: 30963717
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Inverting the Triiodide Formation Reaction by the Synergy between Strong Electrolyte Solvation and Cathode Adsorption for Lithium-Oxygen Batteries.
    Zhang XP; Li YN; Sun YY; Zhang T
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18394-18398. PubMed ID: 31628706
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Oxidative decomposition mechanisms of lithium carbonate on carbon substrates in lithium battery chemistries.
    Cao D; Tan C; Chen Y
    Nat Commun; 2022 Aug; 13(1):4908. PubMed ID: 35987749
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy.
    Vizintin A; Bitenc J; Kopač Lautar A; Pirnat K; Grdadolnik J; Stare J; Randon-Vitanova A; Dominko R
    Nat Commun; 2018 Feb; 9(1):661. PubMed ID: 29445156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.