BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 30095020)

  • 1. Modification of α-lactose monohydrate as a direct compression excipient using roller compaction.
    Abu Fara D; Rashid I; Alkhamis K; Al-Omari M; Chowdhry BZ; Badwan A
    Drug Dev Ind Pharm; 2018 Dec; 44(12):2038-2047. PubMed ID: 30095020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.
    Grote S; Kleinebudde P
    Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.
    Hein S; Picker-Freyer KM; Langridge J
    Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Performance of a Novel Direct Compression Excipient Comprising Roller Compacted Chitin.
    Abu Fara D; Al-Hmoud L; Rashid I; Chowdhry BZ; Badwan A
    Mar Drugs; 2020 Feb; 18(2):. PubMed ID: 32079246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
    Omar CS; Dhenge RM; Osborne JD; Althaus TO; Palzer S; Hounslow MJ; Salman AD
    Int J Pharm; 2015 Dec; 496(1):63-74. PubMed ID: 26117279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc.
    Chang CK; Alvarez-Nunez FA; Rinella JV; Magnusson LE; Sueda K
    AAPS PharmSciTech; 2008; 9(2):597-604. PubMed ID: 18459052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose.
    Tay JYS; Kok BWT; Liew CV; Heng PWS
    J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roller compaction: Effect of relative humidity of lactose powder.
    Omar CS; Dhenge RM; Palzer S; Hounslow MJ; Salman AD
    Eur J Pharm Biopharm; 2016 Sep; 106():26-37. PubMed ID: 26940133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of amorphous content on compaction behaviour of anhydrous alpha-lactose.
    Ziffels S; Steckel H
    Int J Pharm; 2010 Mar; 387(1-2):71-8. PubMed ID: 20005927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.
    Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F
    Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of excipient particle size on the reduction of compactibility after roller compaction.
    Janssen PHM; Jaspers M; Meier R; Roelofs TP; Dickhoff BHJ
    Int J Pharm X; 2022 Dec; 4():100117. PubMed ID: 35496756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellactose a co-processed excipient: a comparison study.
    Arida AI; Al-Tabakha MM
    Pharm Dev Technol; 2008; 13(2):165-75. PubMed ID: 18379907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QbD approach to downstream processing of spray-dried amorphous solid dispersions - a case study.
    Henriques J; Moreira J; Doktorovová S
    Pharm Dev Technol; 2021 Mar; 26(3):269-277. PubMed ID: 33322990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle engineering of excipients: A mechanistic investigation into the compaction properties of lignin and [co]-spray dried lignin.
    Solomon S; Ziaee A; Giraudeau L; O'Reilly E; Walker G; Albadarin AB
    Int J Pharm; 2019 May; 563():237-248. PubMed ID: 30935917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.
    Lin X; Chyi CW; Ruan KF; Feng Y; Heng PW
    Eur J Pharm Biopharm; 2011 Oct; 79(2):406-15. PubMed ID: 21458566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of α-lactose monohydrate to anhydrous form with superior tabletability by twin-screw extrusion at elevated temperature.
    Batra A; Desai D; Serajuddin ATM
    Int J Pharm; 2020 Oct; 588():119790. PubMed ID: 32822779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.
    James J; Crean B; Davies M; Toon R; Jinks P; Roberts CJ
    Int J Pharm; 2008 Sep; 361(1-2):209-21. PubMed ID: 18577435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.