These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30095329)
1. Role of Computationally Evaluated Target Specificity in the Hepatotoxicity of Gapmer Antisense Oligonucleotides. Kasuya T; Kugimiya A Nucleic Acid Ther; 2018 Oct; 28(5):312-317. PubMed ID: 30095329 [TBL] [Abstract][Full Text] [Related]
2. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Kasuya T; Hori S; Watanabe A; Nakajima M; Gahara Y; Rokushima M; Yanagimoto T; Kugimiya A Sci Rep; 2016 Jul; 6():30377. PubMed ID: 27461380 [TBL] [Abstract][Full Text] [Related]
3. Comparison of hepatic transcription profiles of locked ribonucleic acid antisense oligonucleotides: evidence of distinct pathways contributing to non-target mediated toxicity in mice. Kakiuchi-Kiyota S; Koza-Taylor PH; Mantena SR; Nelms LF; Enayetallah AE; Hollingshead BD; Burdick AD; Reed LA; Warneke JA; Whiteley LO; Ryan AM; Mathialagan N Toxicol Sci; 2014 Mar; 138(1):234-48. PubMed ID: 24336348 [TBL] [Abstract][Full Text] [Related]
4. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810 [TBL] [Abstract][Full Text] [Related]
5. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition. Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M Oligonucleotides; 2007; 17(3):291-301. PubMed ID: 17854269 [TBL] [Abstract][Full Text] [Related]
6. Mind the Gapmer: Implications of Co-transcriptional Cleavage by Antisense Oligonucleotides. Maranon DG; Wilusz J Mol Cell; 2020 Mar; 77(5):932-933. PubMed ID: 32142690 [TBL] [Abstract][Full Text] [Related]
7. Development of a Method for Profiling Protein Interactions with LNA-Modified Antisense Oligonucleotides Using Protein Microarrays. Kakiuchi-Kiyota S; Whiteley LO; Ryan AM; Mathialagan N Nucleic Acid Ther; 2016 Apr; 26(2):93-101. PubMed ID: 26643897 [TBL] [Abstract][Full Text] [Related]
8. RNA Reduction and Hepatotoxic Potential Caused by Non-Gapmer Antisense Oligonucleotides. Hori SI; Mitsuoka Y; Kugimiya A Nucleic Acid Ther; 2019 Feb; 29(1):44-50. PubMed ID: 30508397 [TBL] [Abstract][Full Text] [Related]
9. Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers. Maruyama R; Yokota T Methods Mol Biol; 2020; 2176():49-56. PubMed ID: 32865781 [TBL] [Abstract][Full Text] [Related]
10. Knockdown of Long Noncoding RNA Plasmacytoma Variant Translocation 1 with Antisense Locked Nucleic Acid GapmeRs Exerts Tumor-Suppressive Functions in Human Acute Erythroleukemia Cells Through Downregulation of Salehi M; Sharifi M; Bagheri M Cancer Biother Radiopharm; 2019 Aug; 34(6):371-379. PubMed ID: 30141968 [No Abstract] [Full Text] [Related]
11. Antiviral Efficacy of RNase H-Dependent Gapmer Antisense Oligonucleotides against Japanese Encephalitis Virus. Okamoto S; Echigoya Y; Tago A; Segawa T; Sato Y; Itou T Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834294 [TBL] [Abstract][Full Text] [Related]
12. Design of ENA gapmers as fine-tuning antisense oligonucleotides with sequence-specific inhibitory activity on mouse PADI4 mRNA expression. Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M Nucleic Acids Symp Ser (Oxf); 2006; (50):319-20. PubMed ID: 17150946 [TBL] [Abstract][Full Text] [Related]
13. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice. Hagedorn PH; Pontoppidan M; Bisgaard TS; Berrera M; Dieckmann A; Ebeling M; Møller MR; Hudlebusch H; Jensen ML; Hansen HF; Koch T; Lindow M Nucleic Acids Res; 2018 Jun; 46(11):5366-5380. PubMed ID: 29790953 [TBL] [Abstract][Full Text] [Related]
14. Evaluating the Knockdown Activity of MALAT1 ENA Gapmers In Vitro. Iwashita S; Shoji T; Koizumi M Methods Mol Biol; 2020; 2176():155-161. PubMed ID: 32865789 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification study of antisense gapmers. Stanton R; Sciabola S; Salatto C; Weng Y; Moshinsky D; Little J; Walters E; Kreeger J; DiMattia D; Chen T; Clark T; Liu M; Qian J; Roy M; Dullea R Nucleic Acid Ther; 2012 Oct; 22(5):344-59. PubMed ID: 22852836 [TBL] [Abstract][Full Text] [Related]
16. Use of GapmeRs for gene expression knockdowns in human primary resting CD4+ T cells. Abewe H; Deshmukh S; Mukim A; Beliakova-Bethell N J Immunol Methods; 2020 Jan; 476():112674. PubMed ID: 31629740 [TBL] [Abstract][Full Text] [Related]
17. Characterization of target mRNA reduction through in situ RNA hybridization in multiple organ systems following systemic antisense treatment in animals. Hung G; Xiao X; Peralta R; Bhattacharjee G; Murray S; Norris D; Guo S; Monia BP Nucleic Acid Ther; 2013 Dec; 23(6):369-78. PubMed ID: 24161045 [TBL] [Abstract][Full Text] [Related]
18. Filling the gap in LNA antisense oligo gapmers: the effects of unlocked nucleic acid (UNA) and 4'-C-hydroxymethyl-DNA modifications on RNase H recruitment and efficacy of an LNA gapmer. Fluiter K; Mook OR; Vreijling J; Langkjaer N; Højland T; Wengel J; Baas F Mol Biosyst; 2009 Aug; 5(8):838-43. PubMed ID: 19603119 [TBL] [Abstract][Full Text] [Related]
19. Invention and Early History of Gapmers. Lim KRQ; Yokota T Methods Mol Biol; 2020; 2176():3-19. PubMed ID: 32865779 [TBL] [Abstract][Full Text] [Related]
20. Tips for Successful lncRNA Knockdown Using Gapmers. Lennox KA; Behlke MA Methods Mol Biol; 2020; 2176():121-140. PubMed ID: 32865787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]