These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 30095329)
21. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Kamola PJ; Kitson JD; Turner G; Maratou K; Eriksson S; Panjwani A; Warnock LC; Douillard Guilloux GA; Moores K; Koppe EL; Wixted WE; Wilson PA; Gooderham NJ; Gant TW; Clark KL; Hughes SA; Edbrooke MR; Parry JD Nucleic Acids Res; 2015 Oct; 43(18):8638-50. PubMed ID: 26338776 [TBL] [Abstract][Full Text] [Related]
22. Application of 2'-O-(2-N-Methylcarbamoylethyl) Nucleotides in RNase H-Dependent Antisense Oligonucleotides. Masaki Y; Iriyama Y; Nakajima H; Kuroda Y; Kanaki T; Furukawa S; Sekine M; Seio K Nucleic Acid Ther; 2018 Oct; 28(5):307-311. PubMed ID: 30020852 [TBL] [Abstract][Full Text] [Related]
23. Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Shen W; De Hoyos CL; Sun H; Vickers TA; Liang XH; Crooke ST Nucleic Acids Res; 2018 Mar; 46(5):2204-2217. PubMed ID: 29390093 [TBL] [Abstract][Full Text] [Related]
24. Evaluation of Gene Expression Knock-Down by Chemically and Structurally Modified Gapmer Antisense Oligonucleotides. Lisowiec-Wąchnicka J; Danielsen MB; Nader EA; Jørgensen PT; Wengel J; Pasternak A Chembiochem; 2022 Aug; 23(15):e202200168. PubMed ID: 35675170 [TBL] [Abstract][Full Text] [Related]
25. In Vitro Silencing of lncRNAs Using LNA GapmeRs. Taiana E; Favasuli V; Ronchetti D; Morelli E; Tassone P; Viglietto G; Munshi NC; Neri A; Amodio N Methods Mol Biol; 2021; 2348():157-166. PubMed ID: 34160805 [TBL] [Abstract][Full Text] [Related]
26. Palmitoylated phosphodiester gapmer designs with albumin binding capacity and maintained in vitro gene silencing activity. Cai Y; Makarova AM; Wengel J; Howard KA J Gene Med; 2018 Jul; 20(7-8):e3025. PubMed ID: 29800498 [TBL] [Abstract][Full Text] [Related]
27. Influence of mismatched and bulged nucleotides on SNP-preferential RNase H cleavage of RNA-antisense gapmer heteroduplexes. Magner D; Biala E; Lisowiec-Wachnicka J; Kierzek R Sci Rep; 2017 Oct; 7(1):12532. PubMed ID: 28970564 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814 [TBL] [Abstract][Full Text] [Related]
39. Likelihood of Nonspecific Activity of Gapmer Antisense Oligonucleotides Is Associated with Relative Hybridization Free Energy. Watt AT; Swayze G; Swayze EE; Freier SM Nucleic Acid Ther; 2020 Aug; 30(4):215-228. PubMed ID: 32125928 [TBL] [Abstract][Full Text] [Related]
40. On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide. Fluiter K; Frieden M; Vreijling J; Rosenbohm C; De Wissel MB; Christensen SM; Koch T; Ørum H; Baas F Chembiochem; 2005 Jun; 6(6):1104-9. PubMed ID: 15861430 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]