These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30095440)

  • 1. Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method.
    Li Y; Hu X; Li H; Zhang Y; Chen H
    J Phys Condens Matter; 2018 Sep; 30(38):384001. PubMed ID: 30095440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective and eco-friendly method for determination of mercury(II) ions in aqueous samples using an on-line AuNPs-PDMS composite microfluidic device/ICP-MS system.
    Hsu KC; Lee CF; Tseng WC; Chao YY; Huang YL
    Talanta; 2014 Oct; 128():408-13. PubMed ID: 25059179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation.
    Luo X; Vo T; Jambi F; Pham P; Choy JS
    Lab Chip; 2016 Sep; 16(19):3815-3823. PubMed ID: 27713976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive cleavage of elastomeric membrane via controlled interfacial fracture.
    Kim JH; Choi YW; Kim MS; Um HS; Lee SH; Kim P; Suh KY
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11734-40. PubMed ID: 24988493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis.
    Shin J; Ko J; Jeong S; Won P; Lee Y; Kim J; Hong S; Jeon NL; Ko SH
    Nat Mater; 2021 Jan; 20(1):100-107. PubMed ID: 32807919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment.
    Amerian M; Amerian M; Sameti M; Seyedjafari E
    J Biomed Mater Res A; 2019 Dec; 107(12):2806-2813. PubMed ID: 31430022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium.
    Chandana L; Sangeetha CJ; Shashidhar T; Subrahmanyam C
    Sci Total Environ; 2018 Nov; 640-641():493-500. PubMed ID: 29864663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDMS absorption of small molecules and consequences in microfluidic applications.
    Toepke MW; Beebe DJ
    Lab Chip; 2006 Dec; 6(12):1484-6. PubMed ID: 17203151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.