BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30095829)

  • 1. From quantum fragments to Lewis structures: electron counting in position space.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 Aug; 20(33):21368-21380. PubMed ID: 30095829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lewis Structures from Open Quantum Systems Natural Orbitals: Real Space Adaptive Natural Density Partitioning.
    Francisco E; Costales A; Menéndez-Herrero M; Pendás ÁM
    J Phys Chem A; 2021 May; 125(18):4013-4025. PubMed ID: 33909423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoring orbital thinking from real space descriptions: bonding in classical and non-classical transition metal carbonyls.
    Tiana D; Francisco E; Blanco MA; Macchi P; Sironi A; Martín Pendás A
    Phys Chem Chem Phys; 2011 Mar; 13(11):5068-77. PubMed ID: 21298138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-electron images in real space: natural adaptive orbitals.
    Menéndez M; Álvarez Boto R; Francisco E; Martín Pendás Á
    J Comput Chem; 2015 Apr; 36(11):833-43. PubMed ID: 25691432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing paradigms of chemical bonding: adaptive natural density partitioning.
    Zubarev DY; Boldyrev AI
    Phys Chem Chem Phys; 2008 Sep; 10(34):5207-17. PubMed ID: 18728862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group.
    Kurashige Y; Chalupský J; Lan TN; Yanai T
    J Chem Phys; 2014 Nov; 141(17):174111. PubMed ID: 25381506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Variety of Bond Analysis Methods, One Answer? An Investigation of the Element-Oxygen Bond of Hydroxides H
    Fugel M; Beckmann J; Jayatilaka D; Gibbs GV; Grabowsky S
    Chemistry; 2018 Apr; 24(23):6248-6261. PubMed ID: 29465756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real space bond orders are energetic descriptors.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 Jun; 20(23):16231-16237. PubMed ID: 29863214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural Bond Critical Point analysis: quantitative relationships between natural bond orbital-based and QTAIM-based topological descriptors of chemical bonding.
    Weinhold F
    J Comput Chem; 2012 Nov; 33(30):2440-9. PubMed ID: 22837020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic transitions of molecules: vibrating Lewis structures.
    Liu Y; Kilby P; Frankcombe TJ; Schmidt TW
    Chem Sci; 2019 Jul; 10(28):6809-6814. PubMed ID: 31391902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steric repulsions, rotation barriers, and stereoelectronic effects: a real space perspective.
    Pendás AM; Blanco MA; Francisco E
    J Comput Chem; 2009 Jan; 30(1):98-109. PubMed ID: 18536054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy decompositions according to physical space partitioning schemes: treatments of the density cumulant.
    Alcoba DR; Torre A; Lain L; Bochicchio RC
    J Chem Phys; 2007 Sep; 127(10):104110. PubMed ID: 17867740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intrapair electron correlation in natural orbital functional theory.
    Piris M; Matxain JM; Lopez X
    J Chem Phys; 2013 Dec; 139(23):234109. PubMed ID: 24359354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atoms in molecules in real space: a fertile field for chemical bonding.
    Martín Pendás Á; Francisco E; Suárez D; Costales A; Díaz N; Munárriz J; Rocha-Rinza T; Guevara-Vela JM
    Phys Chem Chem Phys; 2023 Apr; 25(15):10231-10262. PubMed ID: 36994471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximal orbital analysis of molecular wavefunctions.
    Dupuis M; Nallapu M
    J Comput Chem; 2019 Jan; 40(1):39-50. PubMed ID: 30226924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-electron integrations in the quantum theory of atoms in molecules with correlated wave functions.
    Pendás AM; Francisco E; Blanco MA
    J Comput Chem; 2005 Mar; 26(4):344-51. PubMed ID: 15643654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hapticity uncovered: real-space bonding indicators for zincocene chemistry.
    Mebs S; Chilleck MA; Grabowsky S; Braun T
    Chemistry; 2012 Sep; 18(37):11647-61. PubMed ID: 22893522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the interpretation of domain averaged Fermi hole analyses of correlated wavefunctions.
    Francisco E; Martín Pendás A; Costales A
    Phys Chem Chem Phys; 2014 Mar; 16(10):4586-97. PubMed ID: 24457524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent quantum chemistry of laser driven many-electron molecules.
    Nguyen-Dang TT; Couture-Bienvenue É; Viau-Trudel J; Sainjon A
    J Chem Phys; 2014 Dec; 141(24):244116. PubMed ID: 25554142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.