BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30095838)

  • 21. Influence of SERS Activity of SnSe
    Tian Y; Wei H; Xu Y; Sun Q; Man B; Liu M
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32987912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS.
    Song G; Gong W; Cong S; Zhao Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5505-5511. PubMed ID: 33258164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene: a platform for surface-enhanced Raman spectroscopy.
    Xu W; Mao N; Zhang J
    Small; 2013 Apr; 9(8):1206-24. PubMed ID: 23529788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Defect engineering in semiconductor-based SERS.
    Song G; Cong S; Zhao Z
    Chem Sci; 2022 Feb; 13(5):1210-1224. PubMed ID: 35222907
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.
    Li P; Wang X; Zhang X; Zhang L; Yang X; Zhao B
    Front Chem; 2019; 7():144. PubMed ID: 30941346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering.
    Kuo CC; Chen CH
    Nanoscale; 2014 Nov; 6(21):12805-13. PubMed ID: 25226177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-regulated enhanced Raman scattering on a semiconductor to study temperature-influenced enantioselective identification.
    Xu J; Li J; Liu X; Hu X; Zhou H; Gao Z; Xu J; Song YY
    Chem Sci; 2024 May; 15(19):7308-7315. PubMed ID: 38756792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Development of SERS Technology: Semiconductor-Based Study.
    Yang B; Jin S; Guo S; Park Y; Chen L; Zhao B; Jung YM
    ACS Omega; 2019 Dec; 4(23):20101-20108. PubMed ID: 31815210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design superhydrophobic no-noble metal substrates for highly sensitive and signal stable SERS sensing.
    Xu H; Zhang Y; Wang Z; Jia Y; Yang X; Gao M
    J Colloid Interface Sci; 2024 Apr; 660():42-51. PubMed ID: 38241870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application.
    Yang L; Yang Y; Ma Y; Li S; Wei Y; Huang Z; Long NV
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate.
    Srichan C; Ekpanyapong M; Horprathum M; Eiamchai P; Nuntawong N; Phokharatkul D; Danvirutai P; Bohez E; Wisitsoraat A; Tuantranont A
    Sci Rep; 2016 Mar; 6():23733. PubMed ID: 27020705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering.
    Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P
    Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionalization of the semiconductor surfaces of diamond (100), Si (100), and Ge (100) by cycloaddition of transition metal oxides: a theoretical prediction.
    Xu YJ; Fu X
    Langmuir; 2009 Sep; 25(17):9840-6. PubMed ID: 19499936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasensitive Sensing of Volatile Organic Compounds Using a Cu-Doped SnO
    Zhou Y; Gu Q; Qiu T; He X; Chen J; Qi R; Huang R; Zheng T; Tian Y
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26260-26267. PubMed ID: 34611980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal oxide semiconductor SERS-active substrates by defect engineering.
    Wu H; Wang H; Li G
    Analyst; 2017 Jan; 142(2):326-335. PubMed ID: 27942616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures.
    Jin Y; Wang Y; Chen M; Xiao X; Zhang T; Wang J; Jiang K; Fan S; Li Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32369-32376. PubMed ID: 28853546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry.
    Szunerits S; Coffinier Y; Boukherroub R
    Sensors (Basel); 2015 May; 15(6):12573-93. PubMed ID: 26024422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity.
    Demirel G; Gieseking RLM; Ozdemir R; Kahmann S; Loi MA; Schatz GC; Facchetti A; Usta H
    Nat Commun; 2019 Dec; 10(1):5502. PubMed ID: 31796731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.