These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30095917)

  • 1. Wettability Alteration of Calcite by Nonionic Surfactants.
    Das S; Nguyen Q; Patil PD; Yu W; Bonnecaze RT
    Langmuir; 2018 Sep; 34(36):10650-10658. PubMed ID: 30095917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs.
    Salehi M; Johnson SJ; Liang JT
    Langmuir; 2008 Dec; 24(24):14099-107. PubMed ID: 19053658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability Alteration and Adsorption of Mixed Nonionic and Anionic Surfactants on Carbonates.
    Das S; Katiyar A; Rohilla N; Nguyen QP; Bonnecaze RT
    Langmuir; 2020 Dec; 36(50):15410-15422. PubMed ID: 33290072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal scaling of adsorption of nonionic surfactants on carbonates using cloud point temperatures.
    Das S; Katiyar A; Rohilla N; Nguyen Q; Bonnecaze RT
    J Colloid Interface Sci; 2020 Oct; 577():431-440. PubMed ID: 32505003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Nanofluids and Surfactants on Heavy Oil Recovery and Oil-Wet Calcite Wettability.
    Hou J; Sun L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous imbibition of surfactant solution into an oil-wet capillary: wettability restoration by surfactant-contaminant complexation.
    Hammond PS; Unsal E
    Langmuir; 2011 Apr; 27(8):4412-29. PubMed ID: 21428422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ethylene oxide groups on calcite wettability reversal by nonionic surfactants: An experimental and molecular dynamics simulation investigation.
    Tetteh J; Kubelka J; Qin L; Piri M
    J Colloid Interface Sci; 2024 Dec; 676():408-416. PubMed ID: 39033675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-induced wettability reversal on oil-wet calcite surfaces: Experimentation and molecular dynamics simulations with scaled-charges.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Mar; 609():890-900. PubMed ID: 34848057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Surfactant Charge and Molecular Structure on Wettability Alteration of Calcite: Insights from Molecular Dynamics Simulations.
    Kubelka J; Bai S; Piri M
    J Phys Chem B; 2021 Feb; 125(4):1293-1305. PubMed ID: 33475371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability reversal on oil-wet calcite surfaces: Experimental and computational investigations of the effect of the hydrophobic chain length of cationic surfactants.
    Tetteh J; Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2022 Aug; 619():168-178. PubMed ID: 35381485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Stabilized Alkylbenzene Sulfonate Surfactants on the Nanoscale with Water-Wet and Oil-Wet Carbonate Surfaces under High-Salinity and High-Temperature Conditions: A QCM-D Study.
    Kawelah MR; Gizzatov A; Jung D; Abdel-Fattah AI
    ACS Omega; 2020 May; 5(19):10838-10846. PubMed ID: 32455204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Investigation of the Synergistic Effect of Two Nonionic Surfactants on Interfacial Properties and Their Application in Enhanced Oil Recovery.
    Saw RK; Sinojiya D; Pillai P; Prakash S; Mandal A
    ACS Omega; 2023 Apr; 8(13):12445-12455. PubMed ID: 37033838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of wettability alteration using surfactants in carbonate reservoirs.
    Yao Y; Wei M; Kang W
    Adv Colloid Interface Sci; 2021 Aug; 294():102477. PubMed ID: 34242888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wettability Alteration of Carbonate Reservoirs Using Imidazolium-Based Ionic Liquids.
    Sakthivel S
    ACS Omega; 2021 Nov; 6(45):30315-30326. PubMed ID: 34805663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Guide for Selection of Aging Time and Temperature for Wettability Alteration in Various Rock-Oil Systems.
    Al-Ameer MA; Azad MS; Al-Shehri D; Mahmoud M; Kamal MS; Patil S
    ACS Omega; 2023 Aug; 8(34):30790-30801. PubMed ID: 37663473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A positively charged calcite surface model for molecular dynamics studies of wettability alteration.
    Bai S; Kubelka J; Piri M
    J Colloid Interface Sci; 2020 Jun; 569():128-139. PubMed ID: 32105900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and dynamic adsorption of a gemini surfactant on a carbonate rock in the presence of low salinity water.
    Kalam S; Abu-Khamsin SA; Gbadamosi AO; Patil S; Kamal MS; Hussain SMS; Al-Shehri D; Al-Shalabi EW; Mohanty KK
    Sci Rep; 2023 Jul; 13(1):11936. PubMed ID: 37488132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.