These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30095955)

  • 1. Single-Mode Phononic Wire.
    Patel RN; Wang Z; Jiang W; Sarabalis CJ; Hill JT; Safavi-Naeini AH
    Phys Rev Lett; 2018 Jul; 121(4):040501. PubMed ID: 30095955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip distribution of quantum information using traveling phonons.
    Zivari A; Fiaschi N; Burgwal R; Verhagen E; Stockill R; Gröblacher S
    Sci Adv; 2022 Nov; 8(46):eadd2811. PubMed ID: 36399558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.
    Balram KC; Davanço MI; Song JD; Srinivasan K
    Nat Photonics; 2016 May; 10(5):346-352. PubMed ID: 27446234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures.
    Hu S; Zhang Z; Jiang P; Ren W; Yu C; Shiomi J; Chen J
    Nanoscale; 2019 Jun; 11(24):11839-11846. PubMed ID: 31184669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A one-dimensional optomechanical crystal with a complete phononic band gap.
    Gomis-Bresco J; Navarro-Urrios D; Oudich M; El-Jallal S; Griol A; Puerto D; Chavez E; Pennec Y; Djafari-Rouhani B; Alzina F; Martínez A; Torres CM
    Nat Commun; 2014 Jul; 5():4452. PubMed ID: 25043827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft surfaces of nanomaterials enable strong phonon interactions.
    Bozyigit D; Yazdani N; Yarema M; Yarema O; Lin WM; Volk S; Vuttivorakulchai K; Luisier M; Juranyi F; Wood V
    Nature; 2016 Mar; 531(7596):618-22. PubMed ID: 26958836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of coherent information via on-chip photonic-phononic emitter-receivers.
    Shin H; Cox JA; Jarecki R; Starbuck A; Wang Z; Rakich PT
    Nat Commun; 2015 Mar; 6():6427. PubMed ID: 25740405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chip-integrated coherent photonic-phononic memory.
    Merklein M; Stiller B; Vu K; Madden SJ; Eggleton BJ
    Nat Commun; 2017 Sep; 8(1):574. PubMed ID: 28924261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical Generation of Coherent GHz Vibrations in a Phononic Waveguide.
    Madiot G; Ng RC; Arregui G; Florez O; Albrechtsen M; Stobbe S; García PD; Sotomayor-Torres CM
    Phys Rev Lett; 2023 Mar; 130(10):106903. PubMed ID: 36962028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal management and non-reciprocal control of phonon flow via optomechanics.
    Seif A; DeGottardi W; Esfarjani K; Hafezi M
    Nat Commun; 2018 Mar; 9(1):1207. PubMed ID: 29572521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Randomness-Induced Phonon Localization in Graphene Heat Conduction.
    Hu S; Zhang Z; Jiang P; Chen J; Volz S; Nomura M; Li B
    J Phys Chem Lett; 2018 Jul; 9(14):3959-3968. PubMed ID: 29968477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optomechanical ring resonator for efficient microwave-optical frequency conversion.
    Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M
    Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optophononics with coupled quantum dots.
    Kerfoot ML; Govorov AO; Czarnocki C; Lu D; Gad YN; Bracker AS; Gammon D; Scheibner M
    Nat Commun; 2014; 5():3299. PubMed ID: 24534815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme.
    Kabuss J; Carmele A; Brandes T; Knorr A
    Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic Single-Phonon Source Triggered by a Single Photon.
    Söllner I; Midolo L; Lodahl P
    Phys Rev Lett; 2016 Jun; 116(23):234301. PubMed ID: 27341236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent phonon optics in a chip with an electrically controlled active device.
    Poyser CL; Akimov AV; Campion RP; Kent AJ
    Sci Rep; 2015 Feb; 5():8279. PubMed ID: 25652241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions.
    Bolmatov D; Zhernenkov M; Sharpnack L; Agra-Kooijman DM; Kumar S; Suvorov A; Pindak R; Cai YQ; Cunsolo A
    Nano Lett; 2017 Jun; 17(6):3870-3876. PubMed ID: 28548861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent Discriminatory Modal Manipulation of Acoustic Phonons at the Nanoscale.
    Yu SJ; Ouyang M
    Nano Lett; 2018 Feb; 18(2):1124-1129. PubMed ID: 29314852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optomechanically engineered phononic mode resonance.
    Gao YP; Wang ZX; Wang TJ; Wang C
    Opt Express; 2017 Oct; 25(22):26638-26650. PubMed ID: 29092152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanical crystals.
    Eichenfield M; Chan J; Camacho RM; Vahala KJ; Painter O
    Nature; 2009 Nov; 462(7269):78-82. PubMed ID: 19838165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.