These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 30096145)
1. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. Zhao Y; Zhang H; Xu J; Jiang C; Yin Z; Xiong H; Xie J; Wang X; Zhu X; Li Y; Zhao W; Rashid MAR; Li J; Wang W; Fu B; Ye G; Guo Y; Hu Z; Li Z; Li Z PLoS Genet; 2018 Aug; 14(8):e1007521. PubMed ID: 30096145 [TBL] [Abstract][Full Text] [Related]
3. QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Li Z; Mu P; Li C; Zhang H; Li Z; Gao Y; Wang X Theor Appl Genet; 2005 May; 110(7):1244-52. PubMed ID: 15765223 [TBL] [Abstract][Full Text] [Related]
4. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. Xia H; Zheng X; Chen L; Gao H; Yang H; Long P; Rong J; Lu B; Li J; Luo L PLoS One; 2014; 9(10):e106352. PubMed ID: 25286109 [TBL] [Abstract][Full Text] [Related]
5. A genomic perspective on the important genetic mechanisms of upland adaptation of rice. Lyu J; Li B; He W; Zhang S; Gou Z; Zhang J; Meng L; Li X; Tao D; Huang W; Hu F; Wang W BMC Plant Biol; 2014 Jun; 14():160. PubMed ID: 24920279 [TBL] [Abstract][Full Text] [Related]
6. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). Zhang K; Kuraparthy V; Fang H; Zhu L; Sood S; Jones DC BMC Genomics; 2019 Nov; 20(1):889. PubMed ID: 31771502 [TBL] [Abstract][Full Text] [Related]
7. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Li J; Han Y; Liu L; Chen Y; Du Y; Zhang J; Sun H; Zhao Q J Exp Bot; 2015 May; 66(9):2723-32. PubMed ID: 25769309 [TBL] [Abstract][Full Text] [Related]
8. Evolution of different rice ecotypes and genetic basis of flooding adaptability in Deepwater rice by GWAS. Wang X; Zhao Y; Jiang C; Wang L; Chen L; Li F; Zhang Y; Pan Y; Zhang T BMC Plant Biol; 2022 Nov; 22(1):526. PubMed ID: 36376791 [TBL] [Abstract][Full Text] [Related]
9. A Region on Chromosome 7 Related to Differentiation of Rice ( Uddin MN; Fukuta Y Front Plant Sci; 2020; 11():1135. PubMed ID: 32849696 [TBL] [Abstract][Full Text] [Related]
10. Genetic analysis of roots and shoots in rice seedling by association mapping. Zhao Y; Jiang CH; Rehman RMA; Zhang HL; Li J; Li ZC Genes Genomics; 2019 Jan; 41(1):95-105. PubMed ID: 30242741 [TBL] [Abstract][Full Text] [Related]
11. Upland rice genomic signatures of adaptation to drought resistance and navigation to molecular design breeding. Wang Y; Jiang C; Zhang X; Yan H; Yin Z; Sun X; Gao F; Zhao Y; Liu W; Han S; Zhang J; Zhang Y; Zhang Z; Zhang H; Li J; Xie X; Zhao Q; Wang X; Ye G; Li J; Ming R; Li Z Plant Biotechnol J; 2024 Mar; 22(3):662-677. PubMed ID: 37909415 [TBL] [Abstract][Full Text] [Related]
12. Bi-directional Selection in Upland Rice Leads to Its Adaptive Differentiation from Lowland Rice in Drought Resistance and Productivity. Xia H; Luo Z; Xiong J; Ma X; Lou Q; Wei H; Qiu J; Yang H; Liu G; Fan L; Chen L; Luo L Mol Plant; 2019 Feb; 12(2):170-184. PubMed ID: 30584948 [TBL] [Abstract][Full Text] [Related]
13. Genetic architecture of variation in heading date among Asian rice accessions. Hori K; Nonoue Y; Ono N; Shibaya T; Ebana K; Matsubara K; Ogiso-Tanaka E; Tanabata T; Sugimoto K; Taguchi-Shiobara F; Yonemaru J; Mizobuchi R; Uga Y; Fukuda A; Ueda T; Yamamoto S; Yamanouchi U; Takai T; Ikka T; Kondo K; Hoshino T; Yamamoto E; Adachi S; Nagasaki H; Shomura A; Shimizu T; Kono I; Ito S; Mizubayashi T; Kitazawa N; Nagata K; Ando T; Fukuoka S; Yamamoto T; Yano M BMC Plant Biol; 2015 May; 15():115. PubMed ID: 25953146 [TBL] [Abstract][Full Text] [Related]
14. Environmental adaptation of the root microbiome in two rice ecotypes. Pang Z; Xu P; Yu D Microbiol Res; 2020 Dec; 241():126588. PubMed ID: 32892063 [TBL] [Abstract][Full Text] [Related]
15. QTL mapping for resistance to and tolerance for the rice root-knot nematode, Meloidogyne graminicola. Galeng-Lawilao J; Kumar A; De Waele D BMC Genet; 2018 Aug; 19(1):53. PubMed ID: 30081817 [TBL] [Abstract][Full Text] [Related]
16. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Steele KA; Price AH; Shashidhar HE; Witcombe JR Theor Appl Genet; 2006 Jan; 112(2):208-21. PubMed ID: 16208503 [TBL] [Abstract][Full Text] [Related]
17. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. Yu J; Xiong H; Zhu X; Zhang H; Li H; Miao J; Wang W; Tang Z; Zhang Z; Yao G; Zhang Q; Pan Y; Wang X; Rashid MAR; Li J; Gao Y; Li Z; Yang W; Fu X; Li Z BMC Biol; 2017 Apr; 15(1):28. PubMed ID: 28385155 [TBL] [Abstract][Full Text] [Related]
18. QTLs and candidate genes for rice root growth under flooding and upland conditions. Zheng BS; Yang L; Mao CZ; Zhang WP; Wu P Yi Chuan Xue Bao; 2006 Feb; 33(2):141-51. PubMed ID: 16529298 [TBL] [Abstract][Full Text] [Related]
19. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. Famoso AN; Zhao K; Clark RT; Tung CW; Wright MH; Bustamante C; Kochian LV; McCouch SR PLoS Genet; 2011 Aug; 7(8):e1002221. PubMed ID: 21829395 [TBL] [Abstract][Full Text] [Related]