BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30096168)

  • 1. Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice.
    Swamy BPM; Descalsota GIL; Nha CT; Amparado A; Inabangan-Asilo MA; Manito C; Tesoro F; Reinke R
    PLoS One; 2018; 13(8):e0201756. PubMed ID: 30096168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-QTL s and haplotypes for efficient zinc biofortification of rice.
    Joshi G; Soe YP; Palanog A; Hore TK; Nha CT; Calayugan MI; Inabangan-Asilo MA; Amparado A; Pandey ID; Cruz PCS; Hernandez JE; Swamy BPM
    Plant Genome; 2023 Dec; 16(4):e20315. PubMed ID: 36896580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain Fe and Zn contents linked SSR markers based genetic diversity in rice.
    Raza Q; Riaz A; Saher H; Bibi A; Raza MA; Ali SS; Sabar M
    PLoS One; 2020; 15(9):e0239739. PubMed ID: 32986755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Association Mapping in a Rice MAGIC Plus Population Detects QTLs and Genes Useful for Biofortification.
    Descalsota GIL; Swamy BPM; Zaw H; Inabangan-Asilo MA; Amparado A; Mauleon R; Chadha-Mohanty P; Arocena EC; Raghavan C; Leung H; Hernandez JE; Lalusin AB; Mendioro MS; Diaz MGQ; Reinke R
    Front Plant Sci; 2018; 9():1347. PubMed ID: 30294335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genetic structure and association mapping for iron toxicity tolerance in rice.
    Pawar S; Pandit E; Mohanty IC; Saha D; Pradhan SK
    PLoS One; 2021; 16(3):e0246232. PubMed ID: 33647046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in breeding for high grain Zinc in Rice.
    Swamy BPM; Rahman MA; Inabangan-Asilo MA; Amparado A; Manito C; Chadha-Mohanty P; Reinke R; Slamet-Loedin IH
    Rice (N Y); 2016 Dec; 9(1):49. PubMed ID: 27671163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm.
    Johnson AA; Kyriacou B; Callahan DL; Carruthers L; Stangoulis J; Lombi E; Tester M
    PLoS One; 2011; 6(9):e24476. PubMed ID: 21915334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single- and multi-trait genomic prediction and genome-wide association analysis of grain yield and micronutrient-related traits in ICARDA wheat under drought environment.
    Tadesse W; Gataa ZE; Rachdad FE; Baouchi AE; Kehel Z; Alemu A
    Mol Genet Genomics; 2023 Nov; 298(6):1515-1526. PubMed ID: 37851098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2Gs and plant architecture: breaking grain yield ceiling through breeding approaches for next wave of revolution in rice (
    Singh G; Kaur N; Khanna R; Kaur R; Gudi S; Kaur R; Sidhu N; Vikal Y; Mangat GS
    Crit Rev Biotechnol; 2024 Feb; 44(1):139-162. PubMed ID: 36176065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping for micronutrients concentration and yield component traits in a hexaploid wheat mapping population.
    Liu J; Wu B; Singh RP; Velu G
    J Cereal Sci; 2019 Jul; 88():57-64. PubMed ID: 33343062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Correlation Between Fe and Zn Biofortification and Yield Components in a Common Bean (
    Diaz S; Polania J; Ariza-Suarez D; Cajiao C; Grajales M; Raatz B; Beebe SE
    Front Plant Sci; 2021; 12():739033. PubMed ID: 35046970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomic Analysis of Quantitative Trait Loci Associated With Micronutrient Contents, Grain Quality, and Agronomic Traits in Wheat (
    Shariatipour N; Heidari B; Tahmasebi A; Richards C
    Front Plant Sci; 2021; 12():709817. PubMed ID: 34712248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat.
    Tong J; Sun M; Wang Y; Zhang Y; Rasheed A; Li M; Xia X; He Z; Hao Y
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and validation of genomic regions influencing kernel zinc and iron in maize.
    Hindu V; Palacios-Rojas N; Babu R; Suwarno WB; Rashid Z; Usha R; Saykhedkar GR; Nair SK
    Theor Appl Genet; 2018 Jul; 131(7):1443-1457. PubMed ID: 29574570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of quantitative trait loci associated with rice eating quality traits using a population of recombinant inbred lines derived from a cross between two temperate japonica cultivars.
    Kwon SW; Cho YC; Lee JH; Suh JP; Kim JJ; Kim MK; Choi IS; Hwang HG; Koh HJ; Kim YG
    Mol Cells; 2011 May; 31(5):437-45. PubMed ID: 21360198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize.
    Jin T; Chen J; Zhu L; Zhao Y; Guo J; Huang Y
    BMC Genet; 2015 Feb; 16():17. PubMed ID: 25888360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [
    Kumar S; Hash CT; Thirunavukkarasu N; Singh G; Rajaram V; Rathore A; Senapathy S; Mahendrakar MD; Yadav RS; Srivastava RK
    Front Plant Sci; 2016; 7():1636. PubMed ID: 27933068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains.
    Frouin J; Labeyrie A; Boisnard A; Sacchi GA; Ahmadi N
    PLoS One; 2019; 14(6):e0217516. PubMed ID: 31194746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of QTLs for some agronomic traits in rice using an introgression line from Oryza minuta.
    Rahman ML; Chu SH; Choi MS; Qiao YL; Jiang W; Piao R; Khanam S; Cho YI; Jeung JU; Jena K; Koh HJ
    Mol Cells; 2007 Aug; 24(1):16-26. PubMed ID: 17846495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci.
    Shrestha AMS; Gonzales MEM; Ong PCL; Larmande P; Lee HS; Jeung JU; Kohli A; Chebotarov D; Mauleon RP; Lee JS; McNally KL
    Gigascience; 2024 Jan; 13():. PubMed ID: 38832465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.