These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 30096365)

  • 1. One protein to rule them all: The role of CCCTC-binding factor in shaping human genome in health and disease.
    Lazniewski M; Dawson WK; Rusek AM; Plewczynski D
    Semin Cell Dev Biol; 2019 Jun; 90():114-127. PubMed ID: 30096365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tour of 3D genome with a focus on CTCF.
    Wang DC; Wang W; Zhang L; Wang X
    Semin Cell Dev Biol; 2019 Jun; 90():4-11. PubMed ID: 30031214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
    Wutz G; Várnai C; Nagasaka K; Cisneros DA; Stocsits RR; Tang W; Schoenfelder S; Jessberger G; Muhar M; Hossain MJ; Walther N; Koch B; Kueblbeck M; Ellenberg J; Zuber J; Fraser P; Peters JM
    EMBO J; 2017 Dec; 36(24):3573-3599. PubMed ID: 29217591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
    Attou A; Zülske T; Wedemann G
    Biophys J; 2022 Dec; 121(24):4788-4799. PubMed ID: 36325618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders.
    Uusküla-Reimand L; Hou H; Samavarchi-Tehrani P; Rudan MV; Liang M; Medina-Rivera A; Mohammed H; Schmidt D; Schwalie P; Young EJ; Reimand J; Hadjur S; Gingras AC; Wilson MD
    Genome Biol; 2016 Aug; 17(1):182. PubMed ID: 27582050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTCF: a Swiss-army knife for genome organization and transcription regulation.
    Braccioli L; de Wit E
    Essays Biochem; 2019 Apr; 63(1):157-165. PubMed ID: 30940740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes.
    Li Y; Huang W; Niu L; Umbach DM; Covo S; Li L
    BMC Genomics; 2013 Aug; 14():553. PubMed ID: 23945083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CTCF and R-loops are boundaries of cohesin-mediated DNA looping.
    Zhang H; Shi Z; Banigan EJ; Kim Y; Yu H; Bai XC; Finkelstein IJ
    Mol Cell; 2023 Aug; 83(16):2856-2871.e8. PubMed ID: 37536339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl.
    Busslinger GA; Stocsits RR; van der Lelij P; Axelsson E; Tedeschi A; Galjart N; Peters JM
    Nature; 2017 Apr; 544(7651):503-507. PubMed ID: 28424523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide studies of CCCTC-binding factor (CTCF) and cohesin provide insight into chromatin structure and regulation.
    Lee BK; Iyer VR
    J Biol Chem; 2012 Sep; 287(37):30906-13. PubMed ID: 22952237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.
    van Ruiten MS; Rowland BD
    Curr Opin Cell Biol; 2021 Jun; 70():84-90. PubMed ID: 33545664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of CTCF binding polarity in genome folding.
    Nora EP; Caccianini L; Fudenberg G; So K; Kameswaran V; Nagle A; Uebersohn A; Hajj B; Saux AL; Coulon A; Mirny LA; Pollard KS; Dahan M; Bruneau BG
    Nat Commun; 2020 Nov; 11(1):5612. PubMed ID: 33154377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of 3D genome organization, guided by cohesin and CTCF looping, on sex-biased chromatin interactions and gene expression in mouse liver.
    Matthews BJ; Waxman DJ
    Epigenetics Chromatin; 2020 Jul; 13(1):30. PubMed ID: 32680543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 17. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights about genome function from spatial organization of the genome.
    Roy SS; Mukherjee AK; Chowdhury S
    Hum Genomics; 2018 Feb; 12(1):8. PubMed ID: 29458419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many facades of CTCF unified by its coding for three-dimensional genome architecture.
    Wu Q; Liu P; Wang L
    J Genet Genomics; 2020 Aug; 47(8):407-424. PubMed ID: 33187878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.