These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 30096641)

  • 1. Artificial creation of Chlorella pyrenoidosa mutants for economic sustainable food production.
    Song X; Wang J; Wang Y; Feng Y; Cui Q; Lu Y
    Bioresour Technol; 2018 Nov; 268():340-345. PubMed ID: 30096641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.
    Smetana S; Sandmann M; Rohn S; Pleissner D; Heinz V
    Bioresour Technol; 2017 Dec; 245(Pt A):162-170. PubMed ID: 28892686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP).
    Cao S; Zhou X; Jin W; Wang F; Tu R; Han S; Chen H; Chen C; Xie GJ; Ma F
    Bioresour Technol; 2017 Nov; 244(Pt 2):1400-1406. PubMed ID: 28539241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the economy of heterotrophic microalgae- and insect-based food waste utilization processes.
    Pleissner D; Smetana S
    Waste Manag; 2020 Feb; 102():198-203. PubMed ID: 31678806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Food waste as nutrient source in heterotrophic microalgae cultivation.
    Pleissner D; Lam WC; Sun Z; Lin CS
    Bioresour Technol; 2013 Jun; 137():139-46. PubMed ID: 23587816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the energy conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis.
    Xia A; Cheng J; Ding L; Lin R; Huang R; Zhou J; Cen K
    Bioresour Technol; 2013 Oct; 146():436-443. PubMed ID: 23955091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.
    Wang Y; Chiu SY; Ho SH; Liu Z; Hasunuma T; Chang TT; Chang KF; Chang JS; Ren NQ; Kondo A
    Biotechnol J; 2016 Aug; 11(8):1072-81. PubMed ID: 27312599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738.
    Sachdeva N; Gupta RP; Mathur AS; Tuli DK
    Bioresour Technol; 2016 Dec; 221():576-587. PubMed ID: 27689351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.
    Wang Y; Guo W; Cheng CL; Ho SH; Chang JS; Ren N
    Bioresour Technol; 2016 Jan; 200():557-64. PubMed ID: 26528906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation.
    Liu S; Zhao Y; Liu L; Ao X; Ma L; Wu M; Ma F
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3507-18. PubMed ID: 25724975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium.
    Liu L; Zhao Y; Jiang X; Wang X; Liang W
    Bioresour Technol; 2018 Aug; 262():342-346. PubMed ID: 29735319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2.
    Cheng J; Huang Y; Feng J; Sun J; Zhou J; Cen K
    Bioresour Technol; 2013 May; 136():496-501. PubMed ID: 23567722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp.
    Tanadul OU; Noochanong W; Jirakranwong P; Chanprame S
    Bioprocess Biosyst Eng; 2018 May; 41(5):613-619. PubMed ID: 29350295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture.
    Wen X; Geng Y; Li Y
    Bioresour Technol; 2014 Jun; 161():297-303. PubMed ID: 24717322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of growth and biomolecules (carbohydrates, proteins, and chlorophylls) of isolated
    Sarkar S; Mankad J; Padhihar N; Manna MS; Bhowmick TK; Gayen K
    Prep Biochem Biotechnol; 2022; 52(10):1173-1189. PubMed ID: 35234575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of hydrogen yield potential from Chlorella by photo-fermentation under diverse substrate concentration and enzyme loading.
    Liu H; Zhang Z; Zhang H; Lee DJ; Zhang Q; Lu C; He C
    Bioresour Technol; 2020 May; 303():122956. PubMed ID: 32058909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential heterotrophy-dilution-photoinduction cultivation for efficient microalgal biomass and lipid production.
    Fan J; Huang J; Li Y; Han F; Wang J; Li X; Wang W; Li S
    Bioresour Technol; 2012 May; 112():206-11. PubMed ID: 22406065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1.
    Chen CY; Liu CC
    Bioresour Technol; 2018 Aug; 262():74-79. PubMed ID: 29698840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.