These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 30096649)
61. Reactivation potency of new group of acetylcholinesterase reactivators and their comparison with currently available oximes. Kuca K; Pícha J; Jun D Acta Medica (Hradec Kralove); 2006; 49(4):233-5. PubMed ID: 17438836 [TBL] [Abstract][Full Text] [Related]
62. Discovery of non-oxime reactivators using an in silico pharmacophore model of reactivators for DFP-inhibited acetylcholinesterase. Bhattacharjee AK; Marek E; Le HT; Ratcliffe R; DeMar JC; Pervitsky D; Gordon RK Eur J Med Chem; 2015 Jan; 90():209-20. PubMed ID: 25461321 [TBL] [Abstract][Full Text] [Related]
63. Oxime K027: novel low-toxic candidate for the universal reactivator of nerve agent- and pesticide-inhibited acetylcholinesterase. Kuca K; Musilek K; Jun D; Pohanka M; Ghosh KK; Hrabinova M J Enzyme Inhib Med Chem; 2010 Aug; 25(4):509-12. PubMed ID: 20192902 [TBL] [Abstract][Full Text] [Related]
64. Design, synthesis and biological evaluation of novel tetrahydroacridine pyridine- aldoxime and -amidoxime hybrids as efficient uncharged reactivators of nerve agent-inhibited human acetylcholinesterase. Kliachyna M; Santoni G; Nussbaum V; Renou J; Sanson B; Colletier JP; Arboléas M; Loiodice M; Weik M; Jean L; Renard PY; Nachon F; Baati R Eur J Med Chem; 2014 May; 78():455-67. PubMed ID: 24704618 [TBL] [Abstract][Full Text] [Related]
66. Substituted monoquaternary oximes as reactivators of cyclosarin--and chlorpyrifos--inhibited acetylcholinesterase. Racakova V; Hrabinova M; Jun D; Kuca K Arh Hig Rada Toksikol; 2006 Dec; 57(4):387-90. PubMed ID: 17265677 [TBL] [Abstract][Full Text] [Related]
67. Demonstration of In Vitro Resurrection of Aged Acetylcholinesterase after Exposure to Organophosphorus Chemical Nerve Agents. Zhuang Q; Franjesevic AJ; Corrigan TS; Coldren WH; Dicken R; Sillart S; DeYong A; Yoshino N; Smith J; Fabry S; Fitzpatrick K; Blanton TG; Joseph J; Yoder RJ; McElroy CA; Ekici ÖD; Callam CS; Hadad CM J Med Chem; 2018 Aug; 61(16):7034-7042. PubMed ID: 29870665 [TBL] [Abstract][Full Text] [Related]
68. Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium. Luo C; Saxena A; Smith M; Garcia G; Radić Z; Taylor P; Doctor BP Biochemistry; 1999 Aug; 38(31):9937-47. PubMed ID: 10433700 [TBL] [Abstract][Full Text] [Related]
69. Discovery of New Classes of Compounds that Reactivate Acetylcholinesterase Inhibited by Organophosphates. Katz FS; Pecic S; Tran TH; Trakht I; Schneider L; Zhu Z; Ton-That L; Luzac M; Zlatanic V; Damera S; Macdonald J; Landry DW; Tong L; Stojanovic MN Chembiochem; 2015 Oct; 16(15):2205-2215. PubMed ID: 26350723 [TBL] [Abstract][Full Text] [Related]
70. Reactivation and aging kinetics of human acetylcholinesterase inhibited by organophosphonylcholines. Worek F; Thiermann H; Szinicz L Arch Toxicol; 2004 Apr; 78(4):212-7. PubMed ID: 14647978 [TBL] [Abstract][Full Text] [Related]
71. Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Renou J; Loiodice M; Arboléas M; Baati R; Jean L; Nachon F; Renard PY Chem Commun (Camb); 2014 Apr; 50(30):3947-50. PubMed ID: 24599312 [TBL] [Abstract][Full Text] [Related]
72. In Vitro Interaction of Organophosphono- and Organophosphorothioates with Human Acetylcholinesterase. Worek F; Thiermann H; Koller M; Wille T Molecules; 2020 Jul; 25(13):. PubMed ID: 32630769 [TBL] [Abstract][Full Text] [Related]
73. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach. Worek F; Aurbek N; Wille T; Eyer P; Thiermann H J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085 [TBL] [Abstract][Full Text] [Related]
74. Potential of two new oximes in reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by organophosphate compounds: an in vitro study. Costa MD; Freitas ML; Soares FA; Carratu VS; Brandão R Toxicol In Vitro; 2011 Dec; 25(8):2120-3. PubMed ID: 21983245 [TBL] [Abstract][Full Text] [Related]
75. Phosphylation kinetic constants and oxime-induced reactivation in acetylcholinesterase from fetal bovine serum, bovine caudate nucleus, and electric eel. Hanke DW; Overton MA J Toxicol Environ Health; 1991 Sep; 34(1):141-56. PubMed ID: 1890690 [TBL] [Abstract][Full Text] [Related]
76. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches. Mangas I; Taylor P; Vilanova E; Estévez J; França TC; Komives E; Radić Z Arch Toxicol; 2016 Mar; 90(3):603-16. PubMed ID: 25743373 [TBL] [Abstract][Full Text] [Related]
77. Interactions between xylene-linked carbamoyl bis-pyridinium mono-oximes and organophosphates inhibited-AChE: a kinetic study. Sharma R; Gupta B; Acharya J; Kaushik MP; Ghosh KK Toxicology; 2014 Feb; 316():1-8. PubMed ID: 24345352 [TBL] [Abstract][Full Text] [Related]
78. Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Worek F; Thiermann H; Szinicz L; Eyer P Biochem Pharmacol; 2004 Dec; 68(11):2237-48. PubMed ID: 15498514 [TBL] [Abstract][Full Text] [Related]
79. Quantum chemical and steered molecular dynamics studies for one pot solution to reactivate aged acetylcholinesterase with alkylator oxime. Chandar NB; Lo R; Ganguly B Chem Biol Interact; 2014 Nov; 223():58-68. PubMed ID: 25218671 [TBL] [Abstract][Full Text] [Related]
80. Limitations in current acetylcholinesterase structure-based design of oxime antidotes for organophosphate poisoning. Kovalevsky A; Blumenthal DK; Cheng X; Taylor P; Radić Z Ann N Y Acad Sci; 2016 Aug; 1378(1):41-49. PubMed ID: 27371941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]