These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30096686)
1. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. Yin Y; Jiang X; Ren M; Xue M; Nan D; Wang Z; Xing Y; Wang M Plant Physiol Biochem; 2018 Sep; 130():517-528. PubMed ID: 30096686 [TBL] [Abstract][Full Text] [Related]
2. Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. Ren M; Wang Z; Xue M; Wang X; Zhang F; Zhang Y; Zhang W; Wang M PLoS One; 2019; 14(10):e0224296. PubMed ID: 31644601 [TBL] [Abstract][Full Text] [Related]
3. [Ectopic expression of the AmDREB1F gene from Ammopiptanthus mongolicus enhances stress tolerance of transgenic Arabidopsis]. Tang K; Dong B; Wen X; Yin Y; Xue M; Su Z; Wang M Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4329-4341. PubMed ID: 34984878 [TBL] [Abstract][Full Text] [Related]
4. Constitutive expression of chloroplast glycerol-3-phosphate acyltransferase from Ammopiptanthus mongolicus enhances unsaturation of chloroplast lipids and tolerance to chilling, freezing and oxidative stress in transgenic Arabidopsis. Xue M; Guo T; Ren M; Wang Z; Tang K; Zhang W; Wang M Plant Physiol Biochem; 2019 Oct; 143():375-387. PubMed ID: 31542639 [TBL] [Abstract][Full Text] [Related]
5. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. Wu Y; Wei W; Pang X; Wang X; Zhang H; Dong B; Xing Y; Li X; Wang M BMC Genomics; 2014 Aug; 15(1):671. PubMed ID: 25108399 [TBL] [Abstract][Full Text] [Related]
6. Identification of stress-responsive genes in Ammopiptanthus mongolicus using ESTs generated from cold- and drought-stressed seedlings. Liu M; Shi J; Lu C BMC Plant Biol; 2013 Jun; 13():88. PubMed ID: 23734749 [TBL] [Abstract][Full Text] [Related]
7. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana. Chen H; Liu L; Wang L; Wang S; Cheng X J Plant Res; 2016 Mar; 129(2):263-73. PubMed ID: 26646381 [TBL] [Abstract][Full Text] [Related]
8. A novel basic helix-loop-helix transcription factor, ZjICE2 from Zoysia japonica confers abiotic stress tolerance to transgenic plants via activating the DREB/CBF regulon and enhancing ROS scavenging. Zuo ZF; Kang HG; Hong QC; Park MY; Sun HJ; Kim J; Song PS; Lee HY Plant Mol Biol; 2020 Mar; 102(4-5):447-462. PubMed ID: 31898148 [TBL] [Abstract][Full Text] [Related]
9. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus. Guo H; Li Z; Zhou M; Cheng H Funct Integr Genomics; 2014 Mar; 14(1):127-33. PubMed ID: 24241624 [TBL] [Abstract][Full Text] [Related]
10. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. Li X; Zhang D; Li H; Wang Y; Zhang Y; Wood AJ BMC Plant Biol; 2014 Feb; 14():44. PubMed ID: 24506952 [TBL] [Abstract][Full Text] [Related]
11. AmDHN4, a winter accumulated SKn-type dehydrin from Ammopiptanthus mongolicus, and regulated by AmWRKY45, enhances the tolerance of Arabidopsis to low temperature and osmotic stress. Liu Q; Zheng L; Wang Y; Zhou Y; Gao F Int J Biol Macromol; 2024 May; 266(Pt 1):131020. PubMed ID: 38521330 [TBL] [Abstract][Full Text] [Related]
12. Functional identification of Ammopiptanthus mongolicus anion channel AmSLAC1 involved in drought induced stomata closure. Junlin L; Lei H; Yanhua S; Hongen G; Huanchao Z Plant Physiol Biochem; 2019 Oct; 143():340-350. PubMed ID: 31541989 [TBL] [Abstract][Full Text] [Related]
13. Characterization of multiple cold induced genes from Ammopiptanthus mongolicus and functional analyses of gene AmEBP1. Cao P; Song J; Zhou C; Weng M; Liu J; Wang F; Zhao F; Feng D; Wang B Plant Mol Biol; 2009 Mar; 69(5):529-39. PubMed ID: 19067182 [TBL] [Abstract][Full Text] [Related]
14. Functional analysis of a type 2C protein phosphatase gene from Ammopiptanthus mongolicus. Han L; Li J; Jin M; Su Y Gene; 2018 May; 653():29-42. PubMed ID: 29427736 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the Transcriptome of the Xerophyte Ammopiptanthus mongolicus Leaves under Drought Stress by 454 Pyrosequencing. Pang T; Guo L; Shim D; Cannon N; Tang S; Chen J; Xia X; Yin W; Carlson JE PLoS One; 2015; 10(8):e0136495. PubMed ID: 26313687 [TBL] [Abstract][Full Text] [Related]
16. A reference-grade genome of the xerophyte Ammopiptanthus mongolicus sheds light on its evolution history in legumes and drought-tolerance mechanisms. Feng L; Teng F; Li N; Zhang JC; Zhang BJ; Tsai SN; Yue XL; Gu LF; Meng GH; Deng TQ; Tong SW; Wang CM; Li Y; Shi W; Zeng YL; Jiang YM; Yu W; Ngai SM; An LZ; Lam HM; He JX Plant Commun; 2024 Jul; 5(7):100891. PubMed ID: 38561965 [TBL] [Abstract][Full Text] [Related]
17. Functional identification of a GORK potassium channel from the ancient desert shrub Ammopiptanthus mongolicus (Maxim.) Cheng f. Li J; Zhang H; Lei H; Jin M; Yue G; Su Y Plant Cell Rep; 2016 Apr; 35(4):803-15. PubMed ID: 26804987 [TBL] [Abstract][Full Text] [Related]
18. Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus. Sun J; Nie L; Sun G; Guo J; Liu Y Mol Biol Rep; 2013 Mar; 40(3):2281-91. PubMed ID: 23212615 [TBL] [Abstract][Full Text] [Related]
19. AnDREB5.1, a A5 group DREB gene from desert shrub Ammopiptanthus nanus, confers osmotic and cold stress tolerances in transgenic tobacco. Zhu M; Zheng L; Cao S; Liu Q; Wei S; Zhou Y; Gao F Physiol Plant; 2024; 176(2):e14272. PubMed ID: 38566275 [TBL] [Abstract][Full Text] [Related]
20. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. Pang T; Ye CY; Xia X; Yin W BMC Genomics; 2013 Jul; 14():488. PubMed ID: 23865740 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]