These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1067 related articles for article (PubMed ID: 30096739)
1. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
2. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L; Qian J; Yang X; Yan Y; Liu Q; Wang K; Wang K Anal Chim Acta; 2014 Jan; 806():128-35. PubMed ID: 24331048 [TBL] [Abstract][Full Text] [Related]
3. Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Sun Y; Jiang X; Jin H; Gui R Anal Chim Acta; 2019 Nov; 1083():101-109. PubMed ID: 31493800 [TBL] [Abstract][Full Text] [Related]
4. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Huang L; Wu J; Zheng L; Qian H; Xue F; Wu Y; Pan D; Adeloju SB; Chen W Anal Chem; 2013 Nov; 85(22):10842-9. PubMed ID: 24206525 [TBL] [Abstract][Full Text] [Related]
5. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J; Chu H; Mei Z; Deng Y; Xue F; Zheng L; Chen W Anal Chim Acta; 2012 Nov; 753():27-31. PubMed ID: 23107133 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Wang P; Wang L; Ding M; Pei M; Guo W Analyst; 2019 Oct; 144(19):5866-5874. PubMed ID: 31482879 [TBL] [Abstract][Full Text] [Related]
7. Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy: Engineering the binding of methylene blue to DNA. Zhu C; Liu D; Li Y; Shen X; Ma S; Liu Y; You T Biosens Bioelectron; 2020 Feb; 150():111814. PubMed ID: 31740254 [TBL] [Abstract][Full Text] [Related]
8. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P; Zhang L; Xu JJ; Chen HY Biosens Bioelectron; 2011 Nov; 29(1):97-101. PubMed ID: 21855315 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous electrochemical determination of ochratoxin A and fumonisin B1 with an aptasensor based on the use of a Y-shaped DNA structure on gold nanorods. Wei M; Xin L; Feng S; Liu Y Mikrochim Acta; 2020 Jan; 187(2):102. PubMed ID: 31912309 [TBL] [Abstract][Full Text] [Related]
10. A dual-signal amplification strategy for kanamycin based on ordered mesoporous carbon-chitosan/gold nanoparticles-streptavidin and ferrocene labelled DNA. Li F; Wang X; Sun X; Guo Y; Zhao W Anal Chim Acta; 2018 Nov; 1033():185-192. PubMed ID: 30172325 [TBL] [Abstract][Full Text] [Related]
11. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Du Y; Chen C; Yin J; Li B; Zhou M; Dong S; Wang E Anal Chem; 2010 Feb; 82(4):1556-63. PubMed ID: 20095580 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Yang X; Qian J; Jiang L; Yan Y; Wang K; Liu Q; Wang K Bioelectrochemistry; 2014 Apr; 96():7-13. PubMed ID: 24355136 [TBL] [Abstract][Full Text] [Related]
13. High-performance and versatile electrochemical aptasensor based on self-supported nanoporous gold microelectrode and enzyme-induced signal amplification. Shi L; Rong X; Wang Y; Ding S; Tang W Biosens Bioelectron; 2018 Apr; 102():41-48. PubMed ID: 29121558 [TBL] [Abstract][Full Text] [Related]
14. Integrated signal probe based aptasensor for dual-analyte detection. Xiang J; Pi X; Chen X; Xiang L; Yang M; Ren H; Shen X; Qi N; Deng C Biosens Bioelectron; 2017 Oct; 96():268-274. PubMed ID: 28505560 [TBL] [Abstract][Full Text] [Related]
15. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Xu S; Guo L; Chen L; Luo F; Qiu B; Lin Z Mikrochim Acta; 2020 Jun; 187(7):413. PubMed ID: 32601890 [TBL] [Abstract][Full Text] [Related]
16. A Polyamidoamine-Based Electrochemical Aptasensor for Sensitive Detection of Ochratoxin A. Chen X; Gao D; Chen J; Wang X; Peng C; Gao H; Wang Y; Li Z; Niu H Biosensors (Basel); 2023 Oct; 13(11):. PubMed ID: 37998130 [TBL] [Abstract][Full Text] [Related]
17. A Label-free aptasensor based on Aptamer/NH Yang YJ; Zhou Y; Xing Y; Zhang GM; Zhang Y; Zhang CH; Lei P; Dong C; Deng X; He Y; Shuang SM Talanta; 2019 Jul; 199():310-316. PubMed ID: 30952263 [TBL] [Abstract][Full Text] [Related]
18. A novel SWCNT-amplified "signal-on" electrochemical aptasensor for the determination of trace level of bisphenol A in human serum and lake water. Zhao Z; Zheng J; Nguyen EP; Tao D; Cheng J; Pan H; Zhang L; Jaffrezic-Renault N; Guo Z Mikrochim Acta; 2020 Aug; 187(9):500. PubMed ID: 32803374 [TBL] [Abstract][Full Text] [Related]
19. Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy. Peng K; Xie P; Yang ZH; Yuan R; Zhang K Biosens Bioelectron; 2018 Apr; 102():282-287. PubMed ID: 29153950 [TBL] [Abstract][Full Text] [Related]