These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30096901)

  • 41. Comparative genomic analysis of bacteriocin-producing Weissella cibaria 110.
    Li SW; Chen YS; Lee YS; Yang CH; Srionnual S; Wu HC; Chang CH
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1227-1237. PubMed ID: 28058448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of viability, acid, and bile tolerance and accelerated stability in lyophilized
    Kim M; Nam DG; Kim SB; Im P; Choe JS; Choi AJ
    Food Sci Nutr; 2018 Oct; 6(7):1904-1913. PubMed ID: 30349680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Complete Genome Sequences of
    Kang MS; Yeu JE; Oh JS; Shin BA; Kim JH
    Genome Announc; 2017 Oct; 5(40):. PubMed ID: 28983008
    [No Abstract]   [Full Text] [Related]  

  • 44. Antibacterial activity and probiotic characterization of autochthonous Paenibacillus polymyxa isolated from Anabas testudineus (Bloch, 1792).
    Midhun SJ; Neethu S; Vysakh A; Arun D; Radhakrishnan EK; Jyothis M
    Microb Pathog; 2017 Dec; 113():403-411. PubMed ID: 29146501
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M.
    Hu Y; Gänzle MG
    Int J Food Microbiol; 2018 Sep; 280():27-34. PubMed ID: 29772465
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima).
    Baruah R; Maina NH; Katina K; Juvonen R; Goyal A
    Int J Food Microbiol; 2017 Feb; 242():124-131. PubMed ID: 27992769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selection of new lactic acid bacteria strains bearing probiotic features from mucosal microbiota of healthy calves: Looking for immunobiotics through in vitro and in vivo approaches for immunoprophylaxis applications.
    Sandes S; Alvim L; Silva B; Acurcio L; Santos C; Campos M; Santos C; Nicoli J; Neumann E; Nunes Á
    Microbiol Res; 2017 Jul; 200():1-13. PubMed ID: 28527759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria.
    Vasanthakumari DS; Harikumar S; Beena DJ; Pandey A; Nampoothiri KM
    Appl Biochem Biotechnol; 2015 May; 176(2):440-53. PubMed ID: 25904036
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for xylooligosaccharide utilization in Weissella strains isolated from Indian fermented foods and vegetables.
    Patel A; Falck P; Shah N; Immerzeel P; Adlercreutz P; Stålbrand H; Prajapati JB; Holst O; Nordberg Karlsson E
    FEMS Microbiol Lett; 2013 Sep; 346(1):20-8. PubMed ID: 23738850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria.
    Kang MS; Kim YS; Lee HC; Lim HS; Oh JS
    Chonnam Med J; 2012 Dec; 48(3):159-63. PubMed ID: 23323221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria.
    Sirichokchatchawan W; Pupa P; Praechansri P; Am-In N; Tanasupawat S; Sonthayanon P; Prapasarakul N
    Microb Pathog; 2018 Jun; 119():208-215. PubMed ID: 29678738
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polysaccharides of Weissella cibaria Act as a Prebiotic to Enhance the Probiotic Potential of Lactobacillus rhamnosus.
    Park S; Saravanakumar K; Sathiyaseelan A; Han KS; Lee J; Wang MH
    Appl Biochem Biotechnol; 2023 Jun; 195(6):3928-3940. PubMed ID: 35947292
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunostimulatory Activity of Synbiotics Using
    Kwon A; Park YS
    Microorganisms; 2021 Nov; 9(12):. PubMed ID: 34946039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lactic Acid Bacteria and Bifidobacteria-Inhibited Staphylococcus epidermidis.
    Lau AS; Liong MT
    Wounds; 2014 May; 26(5):121-31. PubMed ID: 25856101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A fibronectin-binding protein (FbpA) of Weissella cibaria inhibits colonization and infection of Staphylococcus aureus in mammary glands.
    Wang L; Si W; Xue H; Zhao X
    Cell Microbiol; 2017 Aug; 19(8):. PubMed ID: 28125161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Oral Probiotics on Subjective Halitosis, Oral Health, and Psychosocial Health of College Students: A Randomized, Double-Blind, Placebo-Controlled Study.
    Lee DS; Kim M; Nam SH; Kang MS; Lee SA
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33525419
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella.
    Malang SK; Maina NH; Schwab C; Tenkanen M; Lacroix C
    Food Microbiol; 2015 Apr; 46():418-427. PubMed ID: 25475311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry.
    Divya JB; Varsha KK; Nampoothiri KM
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1314-24. PubMed ID: 22350936
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antibacterial activity of probiotic candidates for oral health.
    Samot J; Badet C
    Anaerobe; 2013 Feb; 19():34-8. PubMed ID: 23211763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids.
    Tejero-Sariñena S; Barlow J; Costabile A; Gibson GR; Rowland I
    Anaerobe; 2012 Oct; 18(5):530-8. PubMed ID: 22959627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.