These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30096924)

  • 1. Alkali Release from Aggregates in Long-Service Concrete Structures: Laboratory Test Evaluation and ASR Prediction.
    Berra M; Mangialardi T; Paolini AE
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete.
    Barreto Santos M; De Brito J; Santos Silva A
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Glinicki MA; Gibas K; Baran T
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Alkali-Silica Reactivity of Aggregates by Concrete Expansion Tests in Alkaline Solutions at 38 °C.
    Bavasso I; Costa U; Mangialardi T; Paolini AE
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Distinct Superplasticizers on the Degradation of Concrete Affected by Alkali-Silica Reaction (ASR).
    Zahedi A; Trottier C; Zhu Y; Sanchez LFM
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of Alkali-Silica Reaction: Application to Sandstone.
    Yang Y; Deng M; Mo L; Li W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Laboratory-Accelerated Aging Methods to Study Alkali-Silica Reaction and Reinforcement Corrosion on the Properties of Concrete.
    Attar A; Gencturk B; Aryan H; Wei J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Curing Temperature on Expansion of Concrete Due to ASR.
    Yang Y; Deng M; Mo L; Li W
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of Alkali-Silica Reactivity of Unexplored Local Aggregates as per ASTM C1260.
    Abbas S; Hussain I; Aslam F; Ahmed A; Gillani SAA; Shabbir A; Deifalla AF
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Alkali-Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing.
    Kazemi P; Nikudel MR; Khamehchiyan M; Giri P; Taheri S; Clark SM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Durability of Blended Cements Made with Reactive Aggregates.
    Menéndez E; Sanjuán MÁ; García-Roves R; Argiz C; Recino H
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Test Method for Evaluating Inhibiting Effectiveness of Supplementary Cementitious Materials on Alkali-Silica Reaction Expansion of Concrete.
    Yi L; Mao Z; Deng M; Liu X; Fan Z; Huang X; Zhang T; Tang M
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Glinicki MA
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Aggregate Grain Size on ASR-Induced Expansion.
    Zapała-Sławeta J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of paste composition, aggregate mineralogy and temperature on the pore solution composition and the extent of ASR expansion.
    Bagheri M; Lothenbach B; Scrivener K
    Mater Struct; 2022; 55(7):192. PubMed ID: 36042909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycled Untreated Rubber Waste for Controlling the Alkali-Silica Reaction in Concrete.
    Abbas S; Ahmed A; Waheed A; Abbass W; Yousaf M; Shaukat S; Alabduljabbar H; Awad YA
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case study of distress mechanism(s) in a concrete structure foundation in the saturated zone and above the saturated zone.
    Beyene M; Meininger R
    J Microsc; 2022 May; 286(2):114-119. PubMed ID: 34655244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.