BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 30096974)

  • 1. Structure and development of the larval visual system in embryos of Lytta viridana leconte (coleoptera, meloidae).
    Heming BS
    J Morphol; 1982 Apr; 172(1):23-43. PubMed ID: 30096974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postembryonic brain development in the monarch butterfly,Danaus plexippus plexippus L. : II. The optic lobes.
    Nordlander RH; Edwards JS
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Sep; 163(3):197-220. PubMed ID: 28304487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the single-chamber stemmata of Arge pagana (Panzer, 1798) (Hymenoptera: Argidae).
    Wang Z; Hua BZ
    Arthropod Struct Dev; 2018 Nov; 47(6):614-621. PubMed ID: 30391491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postembryonic changes in the optic primordia and optic bud in the flesh fly Sarcophaga ruficornis fabr. (Diptera: Sarcophagidae).
    Singh YN; Singh M
    Z Mikrosk Anat Forsch; 1979; 93(5):901-14. PubMed ID: 545933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye and optic lobe metamorphosis in the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae).
    Sbita SJ; Morgan RC; Buschbeck EK
    Arthropod Struct Dev; 2007 Dec; 36(4):449-62. PubMed ID: 18089121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomy of the stemmata in the Photuris firefly larva.
    Murphy F; Moiseff A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Feb; 205(1):151-161. PubMed ID: 30649587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental capacities of benign and malignant neoplasms ofDrosophila.
    Gateff E; Schneiderman HA
    Wilhelm Roux Arch Entwickl Mech Org; 1974 Mar; 176(1):23-65. PubMed ID: 28304815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking down the "head blob": comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects.
    Liu Z; Yang X; Dong Y; Friedrich M
    Arthropod Struct Dev; 2006 Dec; 35(4):341-56. PubMed ID: 18089080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The embryology of Lytta viridana Le Conte (Coleoptera: Meloidae). II. The structure of the vitelline membrane.
    Gerrity RG; Rempel JG; Sweeny PR; Church NS
    Can J Zool; 1967 Jul; 45(4):497-503. PubMed ID: 6070626
    [No Abstract]   [Full Text] [Related]  

  • 10. Termination profiles of photoreceptor cells in the larval eye of the swallowtail butterfly.
    Ichikawa T; Tateda H
    J Neurocytol; 1984 Apr; 13(2):227-38. PubMed ID: 6726289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of neuronal connection patterns in the visual systems of insects.
    Meinertzhagen IA
    Ciba Found Symp; 1975; 0(29):265-88. PubMed ID: 1039912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postembryonic brain development in the monarch butterfly,Danaus plexippus plexippus, L. : I. Cellular events during brain morphogenesis.
    Nordlander RH; Edwards JS
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Sep; 162(3):197-217. PubMed ID: 28304450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular and ultrastructural features of the adult and the embryonic eye in the marine gastropod, Ilyanassa obsoleta.
    Gibsonm BL
    J Morphol; 1984 Aug; 181(2):205-220. PubMed ID: 30016850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii.
    Shintani Y; Shiga S; Numata H
    J Exp Biol; 2009 Nov; 212(Pt 22):3651-5. PubMed ID: 19880726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic development of the larval eyes of the Sunburst Diving Beetle, Thermonectus marmoratus (Insecta: Dytiscidae): a morphological study.
    Stecher N; Stowasser A; Stahl A; Buschbeck EK
    Evol Dev; 2016 Jul; 18(4):216-28. PubMed ID: 27402568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural 3D reconstruction of the smallest known insect photoreceptors: The stemmata of a first instar larva of Strepsiptera (Hexapoda).
    Fischer S; Laue M; Müller CHG; Meinertzhagen IA; Pohl H
    Arthropod Struct Dev; 2021 May; 62():101055. PubMed ID: 33975098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first complete 3D reconstruction of a Spanish fly primary larva (Lytta vesicatoria, Meloidae, Coleoptera).
    Ge SQ; Wipfler B; Pohl H; Hua Y; Slipiński A; Yang XK; Beutel RG
    PLoS One; 2012; 7(12):e52511. PubMed ID: 23300692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae.
    Buschbeck EK
    J Exp Biol; 2014 Aug; 217(Pt 16):2818-24. PubMed ID: 25122913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adult stemmata of the butterfly Vanessa cardui express UV and green opsin mRNAs.
    Briscoe AD; White RH
    Cell Tissue Res; 2005 Jan; 319(1):175-9. PubMed ID: 15503147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward an Understanding of Divergent Compound Eye Development in Drones and Workers of the Honeybee (Apis mellifera L.): A Correlative Analysis of Morphology and Gene Expression.
    Marco Antonio DS; Hartfelder K
    J Exp Zool B Mol Dev Evol; 2017 Jan; 328(1-2):139-156. PubMed ID: 27658924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.