BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30097007)

  • 1. In silico insights on diverse interacting partners and phosphorylation sites of respiratory burst oxidase homolog (Rbohs) gene families from Arabidopsis and rice.
    Kaur G; Pati PK
    BMC Plant Biol; 2018 Aug; 18(1):161. PubMed ID: 30097007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cis-acting regulatory elements of Respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions.
    Kaur G; Pati PK
    Comput Biol Chem; 2016 Jun; 62():104-18. PubMed ID: 27111707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases.
    Kaya H; Takeda S; Kobayashi MJ; Kimura S; Iizuka A; Imai A; Hishinuma H; Kawarazaki T; Mori K; Yamamoto Y; Murakami Y; Nakauchi A; Abe M; Kuchitsu K
    Plant J; 2019 Apr; 98(2):291-300. PubMed ID: 30570803
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Kaur G; Pati PK
    Bioinformation; 2018; 14(3):93-100. PubMed ID: 29785067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum.
    Navathe S; Singh S; Singh VK; Chand R; Mishra VK; Joshi AK
    Genes Genomics; 2019 Sep; 41(9):1027-1043. PubMed ID: 31140145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile roles of plant NADPH oxidases and emerging concepts.
    Kaur G; Sharma A; Guruprasad K; Pati PK
    Biotechnol Adv; 2014; 32(3):551-63. PubMed ID: 24561450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity.
    Morales J; Kadota Y; Zipfel C; Molina A; Torres MA
    J Exp Bot; 2016 Mar; 67(6):1663-76. PubMed ID: 26798024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of plant respiratory burst oxidase homologs in stress responses.
    Wang W; Chen D; Zhang X; Liu D; Cheng Y; Shen F
    Free Radic Res; 2018 Aug; 52(8):826-839. PubMed ID: 29732902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
    Kawarazaki T; Kimura S; Iizuka A; Hanamata S; Nibori H; Michikawa M; Imai A; Abe M; Kaya H; Kuchitsu K
    Biochim Biophys Acta; 2013 Dec; 1833(12):2775-2780. PubMed ID: 23872431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural complexity and functional diversity of plant NADPH oxidases.
    Kaur G; Guruprasad K; Temple BRS; Shirvanyants DG; Dokholyan NV; Pati PK
    Amino Acids; 2018 Jan; 50(1):79-94. PubMed ID: 29071531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.
    Wong HL; Pinontoan R; Hayashi K; Tabata R; Yaeno T; Hasegawa K; Kojima C; Yoshioka H; Iba K; Kawasaki T; Shimamoto K
    Plant Cell; 2007 Dec; 19(12):4022-34. PubMed ID: 18156215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system.
    Kimura S; Kawarazaki T; Nibori H; Michikawa M; Imai A; Kaya H; Kuchitsu K
    J Biochem; 2013 Feb; 153(2):191-5. PubMed ID: 23162070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications.
    Oda T; Hashimoto H; Kuwabara N; Akashi S; Hayashi K; Kojima C; Wong HL; Kawasaki T; Shimamoto K; Sato M; Shimizu T
    J Biol Chem; 2010 Jan; 285(2):1435-45. PubMed ID: 19864426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis.
    Li QY; Li P; Myint Phyu Sin Htwe N; Shangguan KK; Liang Y
    J Zhejiang Univ Sci B; 2019 Sept.; 20(9):713-727. PubMed ID: 31379142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.
    Obertello M; Shrivastava S; Katari MS; Coruzzi GM
    Plant Physiol; 2015 Aug; 168(4):1830-43. PubMed ID: 26045464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs.
    Keller T; Damude HG; Werner D; Doerner P; Dixon RA; Lamb C
    Plant Cell; 1998 Feb; 10(2):255-66. PubMed ID: 9490748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Analysis of Respiratory Burst Oxidase Homolog (RBOH) Genes in Plants and Characterization of
    Zhang H; Wang X; Yan A; Deng J; Xie Y; Liu S; Liu D; He L; Weng J; Xu J
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POLYAMINE OXIDASE 1 from rice (Oryza sativa) is a functional ortholog of Arabidopsis POLYAMINE OXIDASE 5.
    Liu T; Wook Kim D; Niitsu M; Berberich T; Kusano T
    Plant Signal Behav; 2014; 9(9):e29773. PubMed ID: 25763711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions.
    Yamauchi T; Yoshioka M; Fukazawa A; Mori H; Nishizawa NK; Tsutsumi N; Yoshioka H; Nakazono M
    Plant Cell; 2017 Apr; 29(4):775-790. PubMed ID: 28351990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis.
    Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D
    Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.