BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30097068)

  • 1. Comparative proteomic analysis of QTL CTS-12 derived from wild rice (Oryza rufipogon Griff.), in the regulation of cold acclimation and de-acclimation of rice (Oryza sativa L.) in response to severe chilling stress.
    Cen W; Liu J; Lu S; Jia P; Yu K; Han Y; Li R; Luo J
    BMC Plant Biol; 2018 Aug; 18(1):163. PubMed ID: 30097068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integration of MicroRNA and Transcriptome Sequencing Analysis Reveal Regulatory Roles of miRNAs in Response to Chilling Stress in Wild Rice.
    Zhao W; Xiao W; Sun J; Chen M; Ma M; Cao Y; Cen W; Li R; Luo J
    Plants (Basel); 2022 Apr; 11(7):. PubMed ID: 35406957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Wild Rice Locus
    Cen W; Zhao W; Ma M; Lu S; Liu J; Cao Y; Zeng Z; Wei H; Wang S; Li R; Luo J
    Front Plant Sci; 2020; 11():575699. PubMed ID: 33193516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq.
    Khatab AA; Li J; Hu L; Yang J; Fan C; Wang L; Xie G
    Planta; 2022 Sep; 256(4):82. PubMed ID: 36103054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Association Mapping Identifies New Candidate Genes for Cold Stress and Chilling Acclimation at Seedling Stage in Rice (
    Li J; Khatab AA; Hu L; Zhao L; Yang J; Wang L; Xie G
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine mapping of the qLOP2 and qPSR2-1 loci associated with chilling stress tolerance of wild rice seedlings.
    Xiao N; Huang WN; Li AH; Gao Y; Li YH; Pan CH; Ji H; Zhang XX; Dai Y; Dai ZY; Chen JM
    Theor Appl Genet; 2015 Jan; 128(1):173-85. PubMed ID: 25367381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterisation of cold stress-related proteins in Oryza rufipogon at the seedling stage using label-free quantitative proteomic analysis.
    Bai LW; Liu J; Dai LF; Deng QW; Chen YL; Xie JK; Luo XD
    Funct Plant Biol; 2021 Apr; 48(5):542-555. PubMed ID: 33487217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling of short-term response to chilling stress in tolerant and sensitive Oryza sativa ssp. Japonica seedlings.
    Buti M; Pasquariello M; Ronga D; Milc JA; Pecchioni N; Ho VT; Pucciariello C; Perata P; Francia E
    Funct Integr Genomics; 2018 Nov; 18(6):627-644. PubMed ID: 29876699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined analysis and miRNA expression profiles of the flowering related genes in common wild rice (oryza rufipogon Griff.).
    Wang J; Long Y; Zhang J; Xue M; Huang G; Huang K; Yuan Q; Pei X
    Genes Genomics; 2018 Aug; 40(8):835-845. PubMed ID: 30047109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomic analysis provides new insights into chilling stress responses in rice.
    Yan SP; Zhang QY; Tang ZC; Su WA; Sun WN
    Mol Cell Proteomics; 2006 Mar; 5(3):484-96. PubMed ID: 16316980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway.
    Mao D; Chen C
    PLoS One; 2012; 7(10):e47275. PubMed ID: 23077584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress.
    Shen ZJ; Qin YY; Luo MR; Li Z; Ma DN; Wang WH; Zheng HL
    J Proteomics; 2021 Sep; 248():104349. PubMed ID: 34411764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.
    Zhang T; Zhao X; Wang W; Pan Y; Huang L; Liu X; Zong Y; Zhu L; Yang D; Fu B
    PLoS One; 2012; 7(8):e43274. PubMed ID: 22912843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi.
    Chawade A; Lindlöf A; Olsson B; Olsson O
    PLoS One; 2013; 8(12):e81729. PubMed ID: 24349120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome Analysis of the Responses of Rice Leaves to Chilling and Subsequent Recovery.
    Li Z; Khan MU; Letuma P; Xie Y; Zhan W; Wang W; Jiang Y; Lin W; Zhang Z
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Phosphorus Stress Related Proteins in the Seedlings of Dongxiang Wild Rice (
    Deng Q; Dai L; Chen Y; Wu D; Shen Y; Xie J; Luo X
    Genes (Basel); 2022 Jan; 13(1):. PubMed ID: 35052448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple Cold Tolerance Trait Phenotyping Reveals Shared Quantitative Trait Loci in Oryza sativa.
    Shimoyama N; Johnson M; Beaumont A; Schläppi M
    Rice (N Y); 2020 Aug; 13(1):57. PubMed ID: 32797316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress.
    Fang C; Zhang P; Jian X; Chen W; Lin H; Li Y; Lin W
    Plant Sci; 2017 Sep; 262():115-126. PubMed ID: 28716407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.