These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 3009716)
1. GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. Watling KJ; Bristow DR J Neurochem; 1986 Jun; 46(6):1755-62. PubMed ID: 3009716 [TBL] [Abstract][Full Text] [Related]
2. GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Hill DR Br J Pharmacol; 1985 Jan; 84(1):249-57. PubMed ID: 2579700 [TBL] [Abstract][Full Text] [Related]
3. Effects of the putative antagonists phaclofen and delta-aminovaleric acid on GABAB receptor biochemistry. Robinson TN; Cross AJ; Green AR; Toczek JM; Boar BR Br J Pharmacol; 1989 Nov; 98(3):833-40. PubMed ID: 2556202 [TBL] [Abstract][Full Text] [Related]
4. GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Karbon EW; Duman RS; Enna SJ Brain Res; 1984 Jul; 306(1-2):327-32. PubMed ID: 6087977 [TBL] [Abstract][Full Text] [Related]
5. Augmentation of neurotransmitter receptor-stimulated cyclic AMP accumulation in rat brain: differentiation between the effects of baclofen and phorbol esters. Scherer RW; Karbon EW; Ferkany JW; Enna SJ Brain Res; 1988 Jun; 451(1-2):361-5. PubMed ID: 2855213 [TBL] [Abstract][Full Text] [Related]
6. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Waldmeier PC; Wicki P; Feldtrauer JJ; Baumann PA Naunyn Schmiedebergs Arch Pharmacol; 1988 Mar; 337(3):289-95. PubMed ID: 2839779 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of cyclic AMP elicited by vasoactive intestinal peptide is potentiated by noradrenaline, histamine, adenosine, baclofen, phorbol esters, and ouabain in mouse cerebral cortical slices: studies on the role of arachidonic acid metabolites and protein kinase C. Schaad NC; Schorderet M; Magistretti PJ J Neurochem; 1989 Dec; 53(6):1941-51. PubMed ID: 2553869 [TBL] [Abstract][Full Text] [Related]
8. Changes in extracellular K+ evoked by GABA, THIP and baclofen in the guinea-pig hippocampal slice. Barolet AW; Morris ME Exp Brain Res; 1991; 84(3):591-8. PubMed ID: 1650707 [TBL] [Abstract][Full Text] [Related]
9. gamma-Aminobutyric acidB receptor activation modifies agonist binding to beta-adrenergic receptors in rat brain cerebral cortex. Scherer RW; Ferkany JW; Karbon EW; Enna SJ J Neurochem; 1989 Sep; 53(3):989-91. PubMed ID: 2547912 [TBL] [Abstract][Full Text] [Related]
10. gamma-Aminobutyric acid inhibition of histamine-induced inositol phosphate formation in guinea-pig cerebellum: comparison with guinea-pig and rat cerebral cortex. Crawford ML; Carswell H; Young JM Br J Pharmacol; 1990 Aug; 100(4):867-73. PubMed ID: 2207505 [TBL] [Abstract][Full Text] [Related]
11. Antagonistic effect of delta-aminovaleric acid on bicuculline-insensitive gamma-aminobutyric acid B (GABA B) sites in the rat's brain. Nakahiro M; Saito K; Yamada I; Yoshida H Neurosci Lett; 1985 Jun; 57(3):263-6. PubMed ID: 2993969 [TBL] [Abstract][Full Text] [Related]
12. Paradoxical antagonism by bicuculline of the inhibition by baclofen of the electrically evoked release of [3H]GABA from rat cerebral cortex slices. Maurin Y Eur J Pharmacol; 1988 Oct; 155(3):219-27. PubMed ID: 2853062 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the relationship between gamma-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Karbon EW; Enna SJ Mol Pharmacol; 1985 Jan; 27(1):53-9. PubMed ID: 2981401 [TBL] [Abstract][Full Text] [Related]
14. gamma-Aminobutyric acid (GABA) stimulates somatostatin release following activation of a GABA uptake carrier located on somatostatin nerve endings of rat cerebral cortex. Raiteri M; Bonanno G; Fedele E; Fontana G; Gemignani A J Pharmacol Exp Ther; 1991 Jan; 256(1):88-93. PubMed ID: 1671101 [TBL] [Abstract][Full Text] [Related]
15. GABAB receptor-mediated inhibition of histamine H1-receptor-induced inositol phosphate formation in slices of rat cerebral cortex. Crawford ML; Young JM J Neurochem; 1988 Nov; 51(5):1441-7. PubMed ID: 2844993 [TBL] [Abstract][Full Text] [Related]
16. Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation. Kemp JA; Marshall GR; Woodruff GN Br J Pharmacol; 1986 Apr; 87(4):677-84. PubMed ID: 3011168 [TBL] [Abstract][Full Text] [Related]
17. Baclofen and phaclofen modulate GABA release from slices of rat cerebral cortex and spinal cord but not from retina. Neal MJ; Shah MA Br J Pharmacol; 1989 Sep; 98(1):105-12. PubMed ID: 2804540 [TBL] [Abstract][Full Text] [Related]
18. Stimulation of luteinizing hormone release by gamma-aminobutyric acid (GABA) agonists: mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels. Virmani MA; Stojilković SS; Catt KJ Endocrinology; 1990 May; 126(5):2499-505. PubMed ID: 2158428 [TBL] [Abstract][Full Text] [Related]
19. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Pittaluga A; Asaro D; Pellegrini G; Raiteri M Eur J Pharmacol; 1987 Nov; 144(1):45-52. PubMed ID: 2830119 [TBL] [Abstract][Full Text] [Related]
20. Release of gamma-[3H]aminobutyric acid (GABA) from electrically stimulated rat cortical slices and its modulation by GABAB autoreceptors. Raiteri M; Bonanno G; Fedele E J Pharmacol Exp Ther; 1989 Aug; 250(2):648-53. PubMed ID: 2547942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]