BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30097438)

  • 1. FinR Regulates Expression of
    Xiao Y; Zhu W; Liu H; Nie H; Chen W; Huang Q
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440.
    Lee Y; Peña-Llopis S; Kang YS; Shin HD; Demple B; Madsen EL; Jeon CO; Park W
    Biochem Biophys Res Commun; 2006 Jan; 339(4):1246-54. PubMed ID: 16360643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida.
    Jiménez JI; Juárez JF; García JL; Díaz E
    Environ Microbiol; 2011 Jul; 13(7):1718-32. PubMed ID: 21450002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440.
    Yeom S; Yeom J; Park W
    Microbiology (Reading); 2010 May; 156(Pt 5):1487-1496. PubMed ID: 20056701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High c-di-GMP promotes expression of fpr-1 and katE involved in oxidative stress resistance in Pseudomonas putida KT2440.
    Xiao Y; Zhu W; He M; Nie H; Chen W; Huang Q
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9077-9089. PubMed ID: 31673742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, crystallization and preliminary X-ray analysis of NicX, a key enzyme in nicotinic acid degradation from
    Desta M; Liu G; Hu H; Wu G; Xu P; Tang H
    J Biol Regul Homeost Agents; 2019; 33(4):1149-1154. PubMed ID: 31298021
    [No Abstract]   [Full Text] [Related]  

  • 7. FleN and FleQ play a synergistic role in regulating lapA and bcs operons in Pseudomonas putida KT2440.
    Nie H; Xiao Y; Liu H; He J; Chen W; Huang Q
    Environ Microbiol Rep; 2017 Oct; 9(5):571-580. PubMed ID: 28517238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Transcriptional Regulator BpsR Controls the Growth of Bordetella bronchiseptica by Repressing Genes Involved in Nicotinic Acid Degradation.
    Guragain M; Jennings-Gee J; Cattelan N; Finger M; Conover MS; Hollis T; Deora R
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29581411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nicotinic Acid Catabolism Modulates Bacterial Mycophagy in Burkholderia gladioli Strain NGJ1.
    Das J; Kumar R; Yadav SK; Jha G
    Microbiol Spectr; 2023 Jun; 11(3):e0445722. PubMed ID: 37014254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bordetella bronchiseptica nic locus encodes a nicotinic acid degradation pathway and the 6-hydroxynicotinate-responsive regulator BpsR.
    Brickman TJ; Armstrong SK
    Mol Microbiol; 2018 May; 108(4):397-409. PubMed ID: 29485696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergic role of the two ars operons in arsenic tolerance in Pseudomonas putida KT2440.
    Fernández M; Udaondo Z; Niqui JL; Duque E; Ramos JL
    Environ Microbiol Rep; 2014 Oct; 6(5):483-9. PubMed ID: 25646541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440.
    Jiménez JI; Canales A; Jiménez-Barbero J; Ginalski K; Rychlewski L; García JL; Díaz E
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11329-34. PubMed ID: 18678916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05.
    Chen L; Wang Y; Miao J; Wang Q; Liu Z; Xie W; Liu X; Feng Z; Cheng S; Chi X; Ge Y
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7825-7839. PubMed ID: 34562115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of pnpR, a LysR-type regulator-encoding gene, on the cellular processes of Pseudomonas putida DLL-E4.
    Chen Q; Tu H; Huang F; Wang Y; Dong W; Wang W; Li Z; Wang F; Cui Z
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of fprB (ferredoxin-NADP+ reductase) in Pseudomonas putida KT2440.
    Lee Y; Yeom J; Kang YS; Kim J; Sung JS; Jeon CO; Park W
    J Microbiol Biotechnol; 2007 Sep; 17(9):1504-12. PubMed ID: 18062229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa.
    Boonma S; Romsang A; Duang-Nkern J; Atichartpongkul S; Trinachartvanit W; Vattanaviboon P; Mongkolsuk S
    PLoS One; 2017; 12(2):e0172071. PubMed ID: 28187184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of superoxide stress in Pseudomonas putida KT2440 is different from the SoxR paradigm in Escherichia coli.
    Park W; Peña-Llopis S; Lee Y; Demple B
    Biochem Biophys Res Commun; 2006 Mar; 341(1):51-6. PubMed ID: 16412384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
    Simon O; Klaiber I; Huber A; Pfannstiel J
    J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary crystallographic study of recombinant NicX, an Fe(2+)-dependent 2,5-dihydroxypyridine dioxygenase from Pseudomonas putida KT2440.
    Jiménez JI; Acebrón I; García JL; Díaz E; Mancheño JM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 May; 66(Pt 5):549-53. PubMed ID: 20445257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light Response of
    Sumi S; Mutaguchi N; Ebuchi T; Tsuchida H; Yamamoto T; Suzuki M; Natsuka C; Shiratori-Takano H; Shintani M; Nojiri H; Ueda K; Takano H
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967908
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.