These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 30097442)
1. Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes. Hori C; Gaskell J; Cullen D; Sabat G; Stewart PE; Lail K; Peng Y; Barry K; Grigoriev IV; Kohler A; Fauchery L; Martin F; Zeiner CA; Bhatnagar JM Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097442 [TBL] [Abstract][Full Text] [Related]
2. Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Presley GN; Panisko E; Purvine SO; Schilling JS Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884760 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion. Gaskell J; Blanchette RA; Stewart PE; BonDurant SS; Adams M; Sabat G; Kersten P; Cullen D Appl Environ Microbiol; 2016 Jul; 82(13):3979-3987. PubMed ID: 27107121 [TBL] [Abstract][Full Text] [Related]
4. Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi. Presley GN; Schilling JS Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130302 [TBL] [Abstract][Full Text] [Related]
5. A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism. Castaño J; Zhang J; Zhou M; Tsai CF; Lee JY; Nicora C; Schilling J mBio; 2021 Aug; 12(4):e0204021. PubMed ID: 34399614 [TBL] [Abstract][Full Text] [Related]
7. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Molinelli L; Drula E; Gaillard J-C; Navarro D; Armengaud J; Berrin J-G; Tron T; Tarrago L Appl Environ Microbiol; 2024 Mar; 90(3):e0193123. PubMed ID: 38376171 [TBL] [Abstract][Full Text] [Related]
8. Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. Mäkinen M; Kuuskeri J; Laine P; Smolander OP; Kovalchuk A; Zeng Z; Asiegbu FO; Paulin L; Auvinen P; Lundell T BMC Genomics; 2019 May; 20(1):430. PubMed ID: 31138126 [TBL] [Abstract][Full Text] [Related]
9. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027 [TBL] [Abstract][Full Text] [Related]
10. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Wu B; Gaskell J; Held BW; Toapanta C; Vuong T; Ahrendt S; Lipzen A; Zhang J; Schilling JS; Master E; Grigoriev IV; Blanchette RA; Cullen D; Hibbett DS Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884757 [TBL] [Abstract][Full Text] [Related]
11. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins. Kaffenberger JT; Schilling JS Environ Microbiol; 2015 Dec; 17(12):4885-97. PubMed ID: 25181619 [TBL] [Abstract][Full Text] [Related]
12. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Riley R; Salamov AA; Brown DW; Nagy LG; Floudas D; Held BW; Levasseur A; Lombard V; Morin E; Otillar R; Lindquist EA; Sun H; LaButti KM; Schmutz J; Jabbour D; Luo H; Baker SE; Pisabarro AG; Walton JD; Blanchette RA; Henrissat B; Martin F; Cullen D; Hibbett DS; Grigoriev IV Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9923-8. PubMed ID: 24958869 [TBL] [Abstract][Full Text] [Related]
13. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe Shah F; Mali T; Lundell TK Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983 [TBL] [Abstract][Full Text] [Related]
14. Diversity and decay ability of basidiomycetes isolated from lodgepole pines killed by the mountain pine beetle. Son E; Kim JJ; Lim YW; Au-Yeung TT; Yang CY; Breuil C Can J Microbiol; 2011 Jan; 57(1):33-41. PubMed ID: 21217795 [TBL] [Abstract][Full Text] [Related]
16. The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Valadares F; Gonçalves TA; Damasio A; Milagres AM; Squina FM; Segato F; Ferraz A Enzyme Microb Technol; 2019 Nov; 130():109370. PubMed ID: 31421724 [TBL] [Abstract][Full Text] [Related]
17. Genome comparison and transcriptome analysis of the invasive brown root rot pathogen, Phellinus noxius, from different geographic regions reveals potential enzymes associated with degradation of different wood substrates. Ibarra Caballero JR; Ata JP; Leddy KA; Glenn TC; Kieran TJ; Klopfenstein NB; Kim MS; Stewart JE Fungal Biol; 2020 Feb; 124(2):144-154. PubMed ID: 32008755 [TBL] [Abstract][Full Text] [Related]
18. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. Arantes V; Milagres AM; Filley TR; Goodell B J Ind Microbiol Biotechnol; 2011 Apr; 38(4):541-55. PubMed ID: 20711629 [TBL] [Abstract][Full Text] [Related]
19. Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals. Castaño JD; Zhang J; Anderson CE; Schilling JS Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30194102 [TBL] [Abstract][Full Text] [Related]
20. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems. Schilling JS; Tewalt JP; Duncan SM Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]