BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30097468)

  • 1. Plant Phenotyping: An Active Vision Cell for Three-Dimensional Plant Shoot Reconstruction.
    Gibbs JA; Pound M; French AP; Wells DM; Murchie E; Pridmore T
    Plant Physiol; 2018 Oct; 178(2):524-534. PubMed ID: 30097468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Vision and Surface Reconstruction for 3D Plant Shoot Modelling.
    Gibbs JA; Pound MP; French AP; Wells DM; Murchie EH; Pridmore TP
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1907-1917. PubMed ID: 31027044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structured Light-Based 3D Reconstruction System for Plants.
    Nguyen TT; Slaughter DC; Max N; Maloof JN; Sinha N
    Sensors (Basel); 2015 Jul; 15(8):18587-612. PubMed ID: 26230701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated recovery of three-dimensional models of plant shoots from multiple color images.
    Pound MP; French AP; Murchie EH; Pridmore TP
    Plant Physiol; 2014 Dec; 166(4):1688-98. PubMed ID: 25332504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seeing space: visualization and quantification of plant leaf structure using X-ray micro-computed tomography.
    Pajor R; Fleming A; Osborne CP; Rolfe SA; Sturrock CJ; Mooney SJ
    J Exp Bot; 2013 Jan; 64(2):385-90. PubMed ID: 23307914
    [No Abstract]   [Full Text] [Related]  

  • 6. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level.
    Rose JC; Paulus S; Kuhlmann H
    Sensors (Basel); 2015 Apr; 15(5):9651-65. PubMed ID: 25919368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Leaf Segmentation for Estimating Leaf Area and Leaf Inclination Angle in 3D Plant Images.
    Itakura K; Hosoi F
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches to Improve Three Basic Plant Phenotyping Tasks Using Three-Dimensional Point Clouds.
    Ziamtsov I; Navlakha S
    Plant Physiol; 2019 Dec; 181(4):1425-1440. PubMed ID: 31591152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations.
    Hui F; Zhu J; Hu P; Meng L; Zhu B; Guo Y; Li B; Ma Y
    Ann Bot; 2018 Apr; 121(5):1079-1088. PubMed ID: 29509841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Registration of spatio-temporal point clouds of plants for phenotyping.
    Chebrolu N; Magistri F; Läbe T; Stachniss C
    PLoS One; 2021; 16(2):e0247243. PubMed ID: 33630896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision Based Modeling of Plants Phenotyping in Vertical Farming under Artificial Lighting.
    Franchetti B; Ntouskos V; Giuliani P; Herman T; Barnes L; Pirri F
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless Fixed Camera Network for Greenhouse-Based Plant Phenotyping.
    Shakoor N; Mockler TC
    Methods Mol Biol; 2022; 2539():49-56. PubMed ID: 35895195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M; Herzog K; Töpfer R; Cremers D
    BMC Bioinformatics; 2015 May; 16():143. PubMed ID: 25943369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Reconstruction of Non-Rigid Plants and Sensor Data Fusion for Agriculture Phenotyping.
    Sampaio GS; Silva LA; Marengoni M
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performances Evaluation of a Low-Cost Platform for High-Resolution Plant Phenotyping.
    Rossi R; Leolini C; Costafreda-Aumedes S; Leolini L; Bindi M; Zaldei A; Moriondo M
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32498361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
    Das Choudhury S; Maturu S; Samal A; Stoerger V; Awada T
    Front Plant Sci; 2020; 11():521431. PubMed ID: 33362806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction method and optimum range of camera-shooting angle for 3D plant modeling using a multi-camera photography system.
    Lu X; Ono E; Lu S; Zhang Y; Teng P; Aono M; Shimizu Y; Hosoi F; Omasa K
    Plant Methods; 2020; 16():118. PubMed ID: 32874194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional statistical reconstruction model of grapevine (Vitis vinifera) simulating canopy structure variability within and between cultivar/training system pairs.
    Louarn G; Lecoeur J; Lebon E
    Ann Bot; 2008 May; 101(8):1167-84. PubMed ID: 18202006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of feature point detectors for multimodal image registration in plant phenotyping.
    Henke M; Junker A; Neumann K; Altmann T; Gladilin E
    PLoS One; 2019; 14(9):e0221203. PubMed ID: 31568494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.