These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bacteria and archaea on Earth and their abundance in biofilms. Flemming HC; Wuertz S Nat Rev Microbiol; 2019 Apr; 17(4):247-260. PubMed ID: 30760902 [TBL] [Abstract][Full Text] [Related]
5. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Justice NB; Pan C; Mueller R; Spaulding SE; Shah V; Sun CL; Yelton AP; Miller CS; Thomas BC; Shah M; VerBerkmoes N; Hettich R; Banfield JF Appl Environ Microbiol; 2012 Dec; 78(23):8321-30. PubMed ID: 23001646 [TBL] [Abstract][Full Text] [Related]
6. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm Archaea community is highly dependent on the support material. Habouzit F; Hamelin J; Santa-Catalina G; Steyer JP; Bernet N Microb Biotechnol; 2014 May; 7(3):257-64. PubMed ID: 24612643 [TBL] [Abstract][Full Text] [Related]
7. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species. Probst AJ; Birarda G; Holman HY; DeSantis TZ; Wanner G; Andersen GL; Perras AK; Meck S; Völkel J; Bechtel HA; Wirth R; Moissl-Eichinger C PLoS One; 2014; 9(6):e99801. PubMed ID: 24971452 [TBL] [Abstract][Full Text] [Related]
8. Tackling the minority: sulfate-reducing bacteria in an archaea-dominated subsurface biofilm. Probst AJ; Holman HY; DeSantis TZ; Andersen GL; Birarda G; Bechtel HA; Piceno YM; Sonnleitner M; Venkateswaran K; Moissl-Eichinger C ISME J; 2013 Mar; 7(3):635-51. PubMed ID: 23178669 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Lenhart TR; Duncan KE; Beech IB; Sunner JA; Smith W; Bonifay V; Biri B; Suflita JM Biofouling; 2014; 30(7):823-35. PubMed ID: 25115517 [TBL] [Abstract][Full Text] [Related]
10. Oxygen-dependent niche formation of a pyrite-dependent acidophilic consortium built by archaea and bacteria. Ziegler S; Dolch K; Geiger K; Krause S; Asskamp M; Eusterhues K; Kriews M; Wilhelms-Dick D; Goettlicher J; Majzlan J; Gescher J ISME J; 2013 Sep; 7(9):1725-37. PubMed ID: 23619304 [TBL] [Abstract][Full Text] [Related]
11. Hyperbaric biofilms on engineering surfaces formed in the deep sea. Meier A; Tsaloglou NM; Mowlem MC; Keevil CW; Connelly DP Biofouling; 2013; 29(9):1029-42. PubMed ID: 23964799 [TBL] [Abstract][Full Text] [Related]
13. What drives bacteria to produce a biofilm? Jefferson KK FEMS Microbiol Lett; 2004 Jul; 236(2):163-73. PubMed ID: 15251193 [TBL] [Abstract][Full Text] [Related]
15. Small RNAs and their role in biofilm formation. Chambers JR; Sauer K Trends Microbiol; 2013 Jan; 21(1):39-49. PubMed ID: 23178000 [TBL] [Abstract][Full Text] [Related]
16. Use of lectins to in situ visualize glycoconjugates of extracellular polymeric substances in acidophilic archaeal biofilms. Zhang RY; Neu TR; Bellenberg S; Kuhlicke U; Sand W; Vera M Microb Biotechnol; 2015 May; 8(3):448-61. PubMed ID: 25488256 [TBL] [Abstract][Full Text] [Related]
17. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. Denef VJ; Mueller RS; Banfield JF ISME J; 2010 May; 4(5):599-610. PubMed ID: 20164865 [TBL] [Abstract][Full Text] [Related]