BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30097859)

  • 1. In Vitro Techniques for ADP-Ribosylated Substrate Identification.
    Grimaldi G; Catara G; Valente C; Corda D
    Methods Mol Biol; 2018; 1813():25-40. PubMed ID: 30097859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins.
    Nowak K; Rosenthal F; Karlberg T; Bütepage M; Thorsell AG; Dreier B; Grossmann J; Sobek J; Imhof R; Lüscher B; Schüler H; Plückthun A; Leslie Pedrioli DM; Hottiger MO
    Nat Commun; 2020 Oct; 11(1):5199. PubMed ID: 33060572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of ADP-Ribosylation of the Androgen Receptor Using the Recombinant Macrodomain AF1521 from Archaeoglobus fulgidus.
    Kamata T; Yang CS; Jividen K; Spencer A; Dworak N; Oostdyk LT; Paschal BM
    Methods Mol Biol; 2019; 1966():107-124. PubMed ID: 31041742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography-Tandem Mass Spectrometry.
    Leutert M; Bilan V; Gehrig P; Hottiger MO
    Methods Mol Biol; 2017; 1608():137-148. PubMed ID: 28695508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome.
    Dani N; Stilla A; Marchegiani A; Tamburro A; Till S; Ladurner AG; Corda D; Di Girolamo M
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4243-8. PubMed ID: 19246377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry.
    Anagho HA; Elsborg JD; Hendriks IA; Buch-Larsen SC; Nielsen ML
    Methods Mol Biol; 2023; 2609():251-270. PubMed ID: 36515840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viral Macro Domains Reverse Protein ADP-Ribosylation.
    Li C; Debing Y; Jankevicius G; Neyts J; Ahel I; Coutard B; Canard B
    J Virol; 2016 Oct; 90(19):8478-86. PubMed ID: 27440879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method.
    Daniels CM; Ong SE; Leung AKL
    Methods Mol Biol; 2017; 1608():79-93. PubMed ID: 28695505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrofluoric Acid-Based Derivatization Strategy To Profile PARP-1 ADP-Ribosylation by LC-MS/MS.
    Gagné JP; Langelier MF; Pascal JM; Poirier GG
    J Proteome Res; 2018 Jul; 17(7):2542-2551. PubMed ID: 29812941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and analysis of ADP-ribosylated proteins.
    Haag F; Buck F
    Curr Top Microbiol Immunol; 2015; 384():33-50. PubMed ID: 25113886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolysis of ADP-Ribosylation by Macrodomains.
    Posavec Marjanovic M; Jankevicius G; Ahel I
    Methods Mol Biol; 2018; 1813():215-223. PubMed ID: 30097870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes.
    Wigle TJ; Church WD; Majer CR; Swinger KK; Aybar D; Schenkel LB; Vasbinder MM; Brendes A; Beck C; Prahm M; Wegener D; Chang P; Kuntz KW
    SLAS Discov; 2020 Mar; 25(3):241-252. PubMed ID: 31855104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ENPP1 processes protein ADP-ribosylation in vitro.
    Palazzo L; Daniels CM; Nettleship JE; Rahman N; McPherson RL; Ong SE; Kato K; Nureki O; Leung AK; Ahel I
    FEBS J; 2016 Sep; 283(18):3371-88. PubMed ID: 27406238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD
    Gibson BA; Kraus WL
    Methods Mol Biol; 2017; 1608():111-135. PubMed ID: 28695507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8.
    Bütepage M; Krieg S; Eckei L; Li J; Rossetti G; Verheugd P; Lüscher B
    Methods Mol Biol; 2018; 1813():41-63. PubMed ID: 30097860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role of intracellular mono-ADP-ribosylation in cancer biology.
    Scarpa ES; Fabrizio G; Di Girolamo M
    FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mono-ADP-ribosylation of the G protein betagamma dimer is modulated by hormones and inhibited by Arf6.
    Dani N; Mayo E; Stilla A; Marchegiani A; Di Paola S; Corda D; Di Girolamo M
    J Biol Chem; 2011 Feb; 286(8):5995-6005. PubMed ID: 21148312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases.
    Stevens LA; Moss J
    Methods Mol Biol; 2018; 1813():149-165. PubMed ID: 30097866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.