BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30097865)

  • 41. Identification of Protein Substrates of Specific PARP Enzymes Using Analog-Sensitive PARP Mutants and a "Clickable" NAD
    Gibson BA; Kraus WL
    Methods Mol Biol; 2017; 1608():111-135. PubMed ID: 28695507
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell fate regulation by chromatin ADP-ribosylation.
    Abplanalp J; Hottiger MO
    Semin Cell Dev Biol; 2017 Mar; 63():114-122. PubMed ID: 27693398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. ADP-ribosylation from molecular mechanisms to therapeutic implications.
    Suskiewicz MJ; Prokhorova E; Rack JGM; Ahel I
    Cell; 2023 Oct; 186(21):4475-4495. PubMed ID: 37832523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specificity of reversible ADP-ribosylation and regulation of cellular processes.
    Crawford K; Bonfiglio JJ; Mikoč A; Matic I; Ahel I
    Crit Rev Biochem Mol Biol; 2018 Feb; 53(1):64-82. PubMed ID: 29098880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Function and regulation of the mono-ADP-ribosyltransferase ARTD10.
    Kaufmann M; Feijs KL; Lüscher B
    Curr Top Microbiol Immunol; 2015; 384():167-88. PubMed ID: 24878761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation.
    Lu AZ; Abo R; Ren Y; Gui B; Mo JR; Blackwell D; Wigle T; Keilhack H; Niepel M
    Biochem Pharmacol; 2019 Sep; 167():97-106. PubMed ID: 31075269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ARTC1-mediated VAPB ADP-ribosylation regulates calcium homeostasis.
    Ma X; Li M; Liu Y; Zhang X; Yang X; Wang Y; Li Y; Wang J; Liu X; Yan Z; Yu X; Wu C
    J Mol Cell Biol; 2024 Jan; 15(7):. PubMed ID: 37381178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Antiviral Activities of Poly-ADP-Ribose Polymerases.
    Malgras M; Garcia M; Jousselin C; Bodet C; Lévêque N
    Viruses; 2021 Mar; 13(4):. PubMed ID: 33808354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of ADP-Ribosylation of the Androgen Receptor Using the Recombinant Macrodomain AF1521 from Archaeoglobus fulgidus.
    Kamata T; Yang CS; Jividen K; Spencer A; Dworak N; Oostdyk LT; Paschal BM
    Methods Mol Biol; 2019; 1966():107-124. PubMed ID: 31041742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detecting ADP-Ribosylation in RNA.
    Munnur D; Ahel I
    Methods Mol Biol; 2021; 2298():231-243. PubMed ID: 34085249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Poly-ADP ribosylation in DNA damage response and cancer therapy.
    Hou WH; Chen SH; Yu X
    Mutat Res Rev Mutat Res; 2019; 780():82-91. PubMed ID: 31395352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis.
    Kim DS; Challa S; Jones A; Kraus WL
    Genes Dev; 2020 Mar; 34(5-6):302-320. PubMed ID: 32029452
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fine-tuning of Smad protein function by poly(ADP-ribose) polymerases and poly(ADP-ribose) glycohydrolase during transforming growth factor β signaling.
    Dahl M; Maturi V; Lönn P; Papoutsoglou P; Zieba A; Vanlandewijck M; van der Heide LP; Watanabe Y; Söderberg O; Hottiger MO; Heldin CH; Moustakas A
    PLoS One; 2014; 9(8):e103651. PubMed ID: 25133494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport.
    Abd Elmageed ZY; Naura AS; Errami Y; Zerfaoui M
    Cell Signal; 2012 Jan; 24(1):1-8. PubMed ID: 21840394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
    Gibson BA; Zhang Y; Jiang H; Hussey KM; Shrimp JH; Lin H; Schwede F; Yu Y; Kraus WL
    Science; 2016 Jul; 353(6294):45-50. PubMed ID: 27256882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
    Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B
    Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes.
    Grimaldi G; Corda D
    Biochem Soc Trans; 2019 Feb; 47(1):357-370. PubMed ID: 30710058
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks.
    Couto CA; Wang HY; Green JC; Kiely R; Siddaway R; Borer C; Pears CJ; Lakin ND
    J Cell Biol; 2011 Aug; 194(3):367-75. PubMed ID: 21807880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PARP7 mono-ADP-ribosylates the agonist conformation of the androgen receptor in the nucleus.
    Kamata T; Yang CS; Paschal BM
    Biochem J; 2021 Aug; 478(15):2999-3014. PubMed ID: 34264286
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into the functional aspects of poly(ADP-ribose) polymerase-1 (PARP-1) in mitochondrial homeostasis in Dictyostelium discoideum.
    Kadam A; Jubin T; Roychowdhury R; Garg A; Parmar N; Palit SP; Begum R
    Biol Cell; 2020 Aug; 112(8):222-237. PubMed ID: 32324907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.