These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 30097874)
1. Nonlocalized Searching of HCD Data for Fast and Sensitive Identification of ADP-Ribosylated Peptides. Colby T; Bonfiglio JJ; Matic I Methods Mol Biol; 2018; 1813():255-269. PubMed ID: 30097874 [TBL] [Abstract][Full Text] [Related]
2. Gas-Phase Fragmentation of ADP-Ribosylated Peptides: Arginine-Specific Side-Chain Losses and Their Implication in Database Searches. Gehrig PM; Nowak K; Panse C; Leutert M; Grossmann J; Schlapbach R; Hottiger MO J Am Soc Mass Spectrom; 2021 Jan; 32(1):157-168. PubMed ID: 33140951 [TBL] [Abstract][Full Text] [Related]
3. Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry. Anagho HA; Elsborg JD; Hendriks IA; Buch-Larsen SC; Nielsen ML Methods Mol Biol; 2023; 2609():251-270. PubMed ID: 36515840 [TBL] [Abstract][Full Text] [Related]
4. Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteomewide ADP-Ribose Acceptor Sites. Bilan V; Leutert M; Nanni P; Panse C; Hottiger MO Anal Chem; 2017 Feb; 89(3):1523-1530. PubMed ID: 28035797 [TBL] [Abstract][Full Text] [Related]
5. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry. Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509 [TBL] [Abstract][Full Text] [Related]
6. A Novel Spectral Annotation Strategy Streamlines Reporting of Mono-ADP-ribosylated Peptides Derived from Mouse Liver and Spleen in Response to IFN-γ. Kuraoka S; Higashi H; Yanagihara Y; Sonawane AR; Mukai S; Mlynarchik AK; Whelan MC; Hottiger MO; Nasir W; Delanghe B; Aikawa M; Singh SA Mol Cell Proteomics; 2022 Apr; 21(4):100153. PubMed ID: 34592425 [TBL] [Abstract][Full Text] [Related]
7. An Advanced Strategy for Comprehensive Profiling of ADP-ribosylation Sites Using Mass Spectrometry-based Proteomics. Hendriks IA; Larsen SC; Nielsen ML Mol Cell Proteomics; 2019 May; 18(5):1010-1026. PubMed ID: 30798302 [TBL] [Abstract][Full Text] [Related]
8. A Study into the ADP-Ribosylome of IFN-γ-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-Ribosylation. Higashi H; Maejima T; Lee LH; Yamazaki Y; Hottiger MO; Singh SA; Aikawa M J Proteome Res; 2019 Apr; 18(4):1607-1622. PubMed ID: 30848916 [TBL] [Abstract][Full Text] [Related]
9. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method. Daniels CM; Ong SE; Leung AKL Methods Mol Biol; 2017; 1608():79-93. PubMed ID: 28695505 [TBL] [Abstract][Full Text] [Related]
10. Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography-Tandem Mass Spectrometry. Leutert M; Bilan V; Gehrig P; Hottiger MO Methods Mol Biol; 2017; 1608():137-148. PubMed ID: 28695508 [TBL] [Abstract][Full Text] [Related]
11. Optimization of LTQ-Orbitrap Mass Spectrometer Parameters for the Identification of ADP-Ribosylation Sites. Rosenthal F; Nanni P; Barkow-Oesterreicher S; Hottiger MO J Proteome Res; 2015 Sep; 14(9):4072-9. PubMed ID: 26211397 [TBL] [Abstract][Full Text] [Related]
12. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation. Larsen SC; Hendriks IA; Lyon D; Jensen LJ; Nielsen ML Cell Rep; 2018 Aug; 24(9):2493-2505.e4. PubMed ID: 30157440 [TBL] [Abstract][Full Text] [Related]
13. PTM MarkerFinder, a software tool to detect and validate spectra from peptides carrying post-translational modifications. Nanni P; Panse C; Gehrig P; Mueller S; Grossmann J; Schlapbach R Proteomics; 2013 Aug; 13(15):2251-5. PubMed ID: 23713006 [TBL] [Abstract][Full Text] [Related]
14. Analytical utility of mass spectral binning in proteomic experiments by SPectral Immonium Ion Detection (SPIID). Kelstrup CD; Frese C; Heck AJ; Olsen JV; Nielsen ML Mol Cell Proteomics; 2014 Aug; 13(8):1914-24. PubMed ID: 24895383 [TBL] [Abstract][Full Text] [Related]
15. Molecular Tools for the Study of ADP-Ribosylation: A Unified and Versatile Method to Synthesise Native Mono-ADP-Ribosylated Peptides. Voorneveld J; Rack JGM; van Gijlswijk L; Meeuwenoord NJ; Liu Q; Overkleeft HS; van der Marel GA; Ahel I; Filippov DV Chemistry; 2021 Jul; 27(41):10621-10627. PubMed ID: 33769608 [TBL] [Abstract][Full Text] [Related]
16. A Combined Gas-Phase Separation Strategy for ADP-ribosylated Peptides. Kasai T; Kuraoka S; Higashi H; Delanghe B; Aikawa M; Singh SA J Am Soc Mass Spectrom; 2023 Oct; 34(10):2136-2145. PubMed ID: 37589412 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive ADP-ribosylome analysis identifies tyrosine as an ADP-ribose acceptor site. Leslie Pedrioli DM; Leutert M; Bilan V; Nowak K; Gunasekera K; Ferrari E; Imhof R; Malmström L; Hottiger MO EMBO Rep; 2018 Aug; 19(8):. PubMed ID: 29954836 [TBL] [Abstract][Full Text] [Related]
18. In Vitro Techniques for ADP-Ribosylated Substrate Identification. Grimaldi G; Catara G; Valente C; Corda D Methods Mol Biol; 2018; 1813():25-40. PubMed ID: 30097859 [TBL] [Abstract][Full Text] [Related]
19. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Li P; Zhen Y; Yu Y Methods Enzymol; 2019; 626():301-321. PubMed ID: 31606080 [TBL] [Abstract][Full Text] [Related]
20. Precursor ion scanning and sequencing of arginine-ADP-ribosylated peptide by mass spectrometry. Osago H; Yamada K; Shibata T; Yoshino K; Hara N; Tsuchiya M Anal Biochem; 2009 Oct; 393(2):248-54. PubMed ID: 19560435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]