BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30097876)

  • 1. Detection of ADP-Ribosylating Bacterial Toxins.
    Chen C; Barbieri JT
    Methods Mol Biol; 2018; 1813():287-295. PubMed ID: 30097876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of ADP-Ribosylation by Macrodomains.
    Posavec Marjanovic M; Jankevicius G; Ahel I
    Methods Mol Biol; 2018; 1813():215-223. PubMed ID: 30097870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved structural motif for recognizing nicotinamide adenine dinucleotide in poly(ADP-ribose) polymerases and ADP-ribosylating toxins: implications for structure-based drug design.
    Lee YM; Babu CS; Chen YC; Milcic M; Qu Y; Lim C
    J Med Chem; 2010 May; 53(10):4038-49. PubMed ID: 20420408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mono-ADP-Ribosylation Catalyzed by Arginine-Specific ADP-Ribosyltransferases.
    Stevens LA; Moss J
    Methods Mol Biol; 2018; 1813():149-165. PubMed ID: 30097866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel bacterial ADP-ribosylating toxins: structure and function.
    Simon NC; Aktories K; Barbieri JT
    Nat Rev Microbiol; 2014 Sep; 12(9):599-611. PubMed ID: 25023120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium perfringens iota-toxin, ADP-ribosyltransferase: structure and mechanism of action.
    Sakurai J; Nagahama M; Hisatsune J; Katunuma N; Tsuge H
    Adv Enzyme Regul; 2003; 43():361-77. PubMed ID: 12791397
    [No Abstract]   [Full Text] [Related]  

  • 9. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.
    Han S; Craig JA; Putnam CD; Carozzi NB; Tainer JA
    Nat Struct Biol; 1999 Oct; 6(10):932-6. PubMed ID: 10504727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins.
    Domenighini M; Magagnoli C; Pizza M; Rappuoli R
    Mol Microbiol; 1994 Oct; 14(1):41-50. PubMed ID: 7830559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins.
    Koch-Nolte F; Petersen D; Balasubramanian S; Haag F; Kahlke D; Willer T; Kastelein R; Bazan F; Thiele HG
    J Biol Chem; 1996 Mar; 271(13):7686-93. PubMed ID: 8631807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the biogenesis, function, and regulation of ADP-ribosylation.
    Cohen MS; Chang P
    Nat Chem Biol; 2018 Feb; 14(3):236-243. PubMed ID: 29443986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the Sensitivity of T Cell Populations Towards NAD
    Rissiek B; Lukowiak M; Haag F; Magnus T; Koch-Nolte F
    Methods Mol Biol; 2018; 1813():317-326. PubMed ID: 30097878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CagL from Helicobacter pylori has ADP-ribosylation activity and exerts partial protective efficacy in mice.
    Talluri E; Pancotto L; Ruggiero P; Scarselli M; Balducci E
    Arch Biochem Biophys; 2017 Dec; 635():102-109. PubMed ID: 29097311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of eukaryotic mono-ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Rev Physiol Biochem Pharmacol; 1996; 129():51-104. PubMed ID: 8898563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities.
    Picchianti M; Del Vecchio M; Di Marcello F; Biagini M; Veggi D; Norais N; Rappuoli R; Pizza M; Balducci E
    FASEB J; 2013 Dec; 27(12):4723-30. PubMed ID: 23964075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins.
    Holbourn KP; Shone CC; Acharya KR
    FEBS J; 2006 Oct; 273(20):4579-93. PubMed ID: 16956368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial ADP-ribosylating toxins: molecular structures and signal transducing functions.
    Kato I
    Microbiol Immunol; 1991; 35(5):349-59. PubMed ID: 1943847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.