These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 30098402)
1. B-cell and T-cell epitope identification with stability analysis of AI-2 import ATP-binding cassette LsrA from S. typhiIn silico approach. Vijayababu P; Samykannu G; Antonyraj CB; Narayanan S; Basheer Ahamed SI; Perumal P; Piramanayagam S Microb Pathog; 2018 Oct; 123():487-495. PubMed ID: 30098402 [TBL] [Abstract][Full Text] [Related]
2. In Silico Characterization of B Cell and T Cell Epitopes for Subunit Vaccine Design of Salmonella typhi PgtE: A Molecular Dynamics Simulation Approach. Samykannu G; Vijayababu P; Antonyraj CB; Perumal P; Narayanan S; Basheer Ahamed SI; Natarajan J J Comput Biol; 2019 Feb; 26(2):105-116. PubMed ID: 30547672 [TBL] [Abstract][Full Text] [Related]
3. Multi-epitope DnaK peptide vaccine against S.Typhi: An in silico approach. Verma S; Sugadev R; Kumar A; Chandna S; Ganju L; Bansal A Vaccine; 2018 Jun; 36(28):4014-4022. PubMed ID: 29861180 [TBL] [Abstract][Full Text] [Related]
4. Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. Priyadarshini V; Pradhan D; Munikumar M; Swargam S; Umamaheswari A; Rajasekhar D J Biomol Struct Dyn; 2014; 32(6):876-89. PubMed ID: 24404767 [TBL] [Abstract][Full Text] [Related]
5. Prioritization of potential vaccine candidates and designing a multiepitope-based subunit vaccine against multidrug-resistant Salmonella Typhi str. CT18: A subtractive proteomics and immunoinformatics approach. Chand Y; Singh S Microb Pathog; 2021 Oct; 159():105150. PubMed ID: 34425197 [TBL] [Abstract][Full Text] [Related]
6. Prediction and analysis of promiscuous T cell-epitopes derived from the vaccine candidate antigens of Leishmania donovani binding to MHC class-II alleles using in silico approach. Kashyap M; Jaiswal V; Farooq U Infect Genet Evol; 2017 Sep; 53():107-115. PubMed ID: 28549876 [TBL] [Abstract][Full Text] [Related]
7. Structural basis and designing of peptide vaccine using PE-PGRS family protein of Mycobacterium ulcerans-An integrated vaccinomics approach. Nain Z; Karim MM; Sen MK; Adhikari UK Mol Immunol; 2020 Apr; 120():146-163. PubMed ID: 32126449 [TBL] [Abstract][Full Text] [Related]
8. Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Mahapatra SR; Dey J; Kushwaha GS; Puhan P; Mohakud NK; Panda SK; Lata S; Misra N; Suar M J Biomol Struct Dyn; 2022; 40(22):11809-11821. PubMed ID: 34463211 [TBL] [Abstract][Full Text] [Related]
9. Identification of B and T cell epitope based peptide vaccine from IGF-1 receptor in breast cancer. Mahdavi M; Moreau V; Kheirollahi M J Mol Graph Model; 2017 Aug; 75():316-321. PubMed ID: 28628857 [TBL] [Abstract][Full Text] [Related]
10. In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1. Kalyanaraman N Mol Immunol; 2018 Jan; 93():193-205. PubMed ID: 29207326 [TBL] [Abstract][Full Text] [Related]
11. Exploring Leptospiral proteomes to identify potential candidates for vaccine design against Leptospirosis using an immunoinformatics approach. Lata KS; Kumar S; Vaghasia V; Sharma P; Bhairappanvar SB; Soni S; Das J Sci Rep; 2018 May; 8(1):6935. PubMed ID: 29720698 [TBL] [Abstract][Full Text] [Related]
12. Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. Jain S; Baranwal M J Theor Biol; 2019 Mar; 465():34-44. PubMed ID: 30639295 [TBL] [Abstract][Full Text] [Related]
13. A novel multi-epitope peptide vaccine against cancer: an in silico approach. Nezafat N; Ghasemi Y; Javadi G; Khoshnoud MJ; Omidinia E J Theor Biol; 2014 May; 349():121-34. PubMed ID: 24512916 [TBL] [Abstract][Full Text] [Related]
14. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches. Nezafat N; Eslami M; Negahdaripour M; Rahbar MR; Ghasemi Y Mol Biosyst; 2017 Mar; 13(4):699-713. PubMed ID: 28194462 [TBL] [Abstract][Full Text] [Related]
15. Design of a new multi-epitope vaccine against Chen Z; Zhu Y; Sha T; Li Z; Li Y; Zhang F; Ding J Epidemiol Infect; 2021 May; 149():e136. PubMed ID: 34032200 [TBL] [Abstract][Full Text] [Related]
16. Exploring T & B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Abdulla F; Adhikari UK; Uddin MK Microb Pathog; 2019 Dec; 137():103791. PubMed ID: 31606417 [TBL] [Abstract][Full Text] [Related]
17. Overlapping CD8+ and CD4+ T-cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Adhikari UK; Rahman MM Infect Genet Evol; 2017 Dec; 56():75-91. PubMed ID: 29107145 [TBL] [Abstract][Full Text] [Related]
19. Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens. Mortier MC; Jongert E; Mettens P; Ruelle JL BMC Immunol; 2015 Oct; 16():63. PubMed ID: 26493839 [TBL] [Abstract][Full Text] [Related]
20. A multiepitopic theoretical fusion construct based on in-silico epitope screening of known vaccine candidates for protection against wide range of enterobacterial pathogens. Kumar A; Harjai K; Chhibber S Hum Immunol; 2019 Jul; 80(7):493-502. PubMed ID: 30769032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]