BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

809 related articles for article (PubMed ID: 30098941)

  • 21. Caffeic acid has antipromastigote activity by apoptosis-like process; and anti-amastigote by TNF-α/ROS/NO production and decreased of iron availability.
    Bortoleti BTDS; Tomiotto-Pellissier F; Gonçalves MD; Miranda-Sapla MM; Assolini JP; Carloto AC; Lima DM; Silveira GF; Almeida RS; Costa IN; Conchon-Costa I; Pavanelli WR
    Phytomedicine; 2019 Apr; 57():262-270. PubMed ID: 30802712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis.
    Sousa JKT; Antinarelli LMR; Mendonça DVC; Lage DP; Tavares GSV; Dias DS; Ribeiro PAF; Ludolf F; Coelho VTS; Oliveira-da-Silva JA; Perin L; Oliveira BA; Alvarenga DF; Chávez-Fumagalli MA; Brandão GC; Nobre V; Pereira GR; Coimbra ES; Coelho EAF
    Parasitol Int; 2019 Dec; 73():101966. PubMed ID: 31362122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The sesquiterpene (-)-α-bisabolol is active against the causative agents of Old World cutaneous leishmaniasis through the induction of mitochondrial-dependent apoptosis.
    Corpas-López V; Merino-Espinosa G; Díaz-Sáez V; Morillas-Márquez F; Navarro-Moll MC; Martín-Sánchez J
    Apoptosis; 2016 Oct; 21(10):1071-81. PubMed ID: 27539477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro.
    Rodrigues KA; Dias CN; Néris PL; Rocha Jda C; Scotti MT; Scotti L; Mascarenhas SR; Veras RC; de Medeiros IA; Keesen Tde S; de Oliveira TB; de Lima Mdo C; Balliano TL; de Aquino TM; de Moura RO; Mendonça Junior FJ; de Oliveira MR
    Eur J Med Chem; 2015 Dec; 106():1-14. PubMed ID: 26513640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 15d-Prostaglandin J2 induced reactive oxygen species-mediated apoptosis during experimental visceral leishmaniasis.
    Vishwakarma P; Parmar N; Yadav PK; Chandrakar P; Kar S
    J Mol Med (Berl); 2016 Jun; 94(6):695-710. PubMed ID: 26830627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis.
    Kaplum V; Cogo J; Sangi DP; Ueda-Nakamura T; Corrêa AG; Nakamura CV
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3433-44. PubMed ID: 27001812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption.
    Valdivieso E; Mejías F; Torrealba C; Benaim G; Kouznetsov VV; Sojo F; Rojas-Ruiz FA; Arvelo F; Dagger F
    Acta Trop; 2018 Jul; 183():36-42. PubMed ID: 29604246
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis.
    Miranda N; Volpato H; da Silva Rodrigues JH; Caetano W; Ueda-Nakamura T; de Oliveira Silva S; Nakamura CV
    J Photochem Photobiol B; 2017 Sep; 174():342-354. PubMed ID: 28821011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive oxygen species production and mitochondrial dysfunction contribute to quercetin induced death in Leishmania amazonensis.
    Fonseca-Silva F; Inacio JD; Canto-Cavalheiro MM; Almeida-Amaral EE
    PLoS One; 2011 Feb; 6(2):e14666. PubMed ID: 21346801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity and Cell-Death Pathway in
    Scariot DB; Volpato H; Fernandes NS; Soares EFP; Ueda-Nakamura T; Dias-Filho BP; Din ZU; Rodrigues-Filho E; Rubira AF; Borges O; Sousa MDC; Nakamura CV
    Front Cell Infect Microbiol; 2019; 9():208. PubMed ID: 31259161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VOSalophen: a vanadium complex with a stilbene derivative-induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis.
    Machado PA; Moraes JOF; Carvalho GSG; Lima WP; Macedo GC; Britta EA; Nakamura CV; da Silva AD; Cuin A; Coimbra ES
    J Biol Inorg Chem; 2017 Aug; 22(6):929-939. PubMed ID: 28597089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro.
    Fanti JR; Tomiotto-Pellissier F; Miranda-Sapla MM; Cataneo AHD; Andrade CGTJ; Panis C; Rodrigues JHDS; Wowk PF; Kuczera D; Costa IN; Nakamura CV; Nakazato G; Durán N; Pavanelli WR; Conchon-Costa I
    Acta Trop; 2018 Feb; 178():46-54. PubMed ID: 29111137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pterocarpanquinone LQB-118 induces apoptosis in Leishmania (Viannia) braziliensis and controls lesions in infected hamsters.
    Costa L; Pinheiro RO; Dutra PM; Santos RF; Cunha-Júnior EF; Torres-Santos EC; da Silva AJ; Costa PR; Da-Silva SA
    PLoS One; 2014; 9(10):e109672. PubMed ID: 25340550
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis.
    Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S
    Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species.
    Da Silva BJM; Da Silva RRP; Rodrigues APD; Farias LHS; Do Nascimento JLM; Silva EO
    Micron; 2016 Mar; 82():25-32. PubMed ID: 26765293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, Synthesis and Antileishmanial Activity of Naphthotriazolyl-4- Oxoquinolines.
    Oliveira VG; Dos Santos Faiões V; Gonçalves GBR; Lima MFO; Boechat FCS; Cunha AC; de Andrade-Neto VV; de C da Silva F; Torres-Santos EC; de Souza MCBV
    Curr Top Med Chem; 2018; 18(17):1454-1464. PubMed ID: 30277154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.
    Britta EA; Silva AP; Ueda-Nakamura T; Dias-Filho BP; Silva CC; Sernaglia RL; Nakamura CV
    PLoS One; 2012; 7(8):e41440. PubMed ID: 22870222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of intracellular proliferation of Leishmania parasites in vitro and suppression of skin lesion development in BALB/c mice by a novel lipid A analog (ONO-4007).
    Khan MA; Maruno M; Khaskhely NM; Ramzi ST; Hosokawa A; Uezato H; Landires EA; Hashiguchi Y; Nonaka S
    Am J Trop Med Hyg; 2002 Aug; 67(2):184-90. PubMed ID: 12389945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of total phenolic fraction derived from extra virgin olive oil for its antileishmanial activity.
    Koutsoni OS; Karampetsou K; Kyriazis ID; Stathopoulos P; Aligiannis N; Halabalaki M; Skaltsounis LA; Dotsika E
    Phytomedicine; 2018 Aug; 47():143-150. PubMed ID: 30166099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro and in vivo miltefosine susceptibility of a Leishmania amazonensis isolate from a patient with diffuse cutaneous leishmaniasis.
    Coelho AC; Trinconi CT; Costa CH; Uliana SR
    PLoS Negl Trop Dis; 2014 Jul; 8(7):e2999. PubMed ID: 25033218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.