These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30099008)

  • 1. Modulation of nitric oxide-stimulated soluble guanylyl cyclase activity by cytoskeleton-associated proteins in vascular smooth muscle.
    Kollau A; Gesslbauer B; Russwurm M; Koesling D; Gorren ACF; Schrammel A; Mayer B
    Biochem Pharmacol; 2018 Oct; 156():168-176. PubMed ID: 30099008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism of Forkhead Box Subclass O Transcription Factors Elicits Loss of Soluble Guanylyl Cyclase Expression.
    Galley JC; Durgin BG; Miller MP; Hahn SA; Yuan S; Wood KC; Straub AC
    Mol Pharmacol; 2019 Jun; 95(6):629-637. PubMed ID: 30988014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoxO4 controls sGCβ transcription in vascular smooth muscle.
    Galley JC; Miller MP; Sanker S; Liu M; Sharina I; Martin E; Gomez D; Straub AC
    Am J Physiol Heart Circ Physiol; 2022 Mar; 322(3):H417-H426. PubMed ID: 35089807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species.
    Gerassimou C; Kotanidou A; Zhou Z; Simoes DC; Roussos C; Papapetropoulos A
    Br J Pharmacol; 2007 Apr; 150(8):1084-91. PubMed ID: 17339839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional Characterization of the
    Kessler T; Wobst J; Wolf B; Eckhold J; Vilne B; Hollstein R; von Ameln S; Dang TA; Sager HB; Moritz Rumpf P; Aherrahrou R; Kastrati A; Björkegren JLM; Erdmann J; Lusis AJ; Civelek M; Kaiser FJ; Schunkert H
    Circulation; 2017 Aug; 136(5):476-489. PubMed ID: 28487391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide.
    Zhou Z; Martin E; Sharina I; Esposito I; Szabo C; Bucci M; Cirino G; Papapetropoulos A
    Pharmacol Res; 2016 Sep; 111():556-562. PubMed ID: 27378567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of the α
    Korkmaz Y; Roggendorf HC; Siefer OG; Seehawer J; Imhof T; Plomann M; Bloch W; Friebe A; Huebbers CU
    J Dent Res; 2018 Oct; 97(11):1214-1221. PubMed ID: 29775416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of the soluble guanylyl cyclase alpha(1) subunit in vascular smooth muscle relaxation.
    Nimmegeers S; Sips P; Buys E; Brouckaert P; Van de Voorde J
    Cardiovasc Res; 2007 Oct; 76(1):149-59. PubMed ID: 17610859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor.
    Montfort WR; Wales JA; Weichsel A
    Antioxid Redox Signal; 2017 Jan; 26(3):107-121. PubMed ID: 26979942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation.
    Durgin BG; Hahn SA; Schmidt HM; Miller MP; Hafeez N; Mathar I; Freitag D; Sandner P; Straub AC
    JCI Insight; 2019 Oct; 4(19):. PubMed ID: 31487266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling.
    Rahaman MM; Nguyen AT; Miller MP; Hahn SA; Sparacino-Watkins C; Jobbagy S; Carew NT; Cantu-Medellin N; Wood KC; Baty CJ; Schopfer FJ; Kelley EE; Gladwin MT; Martin E; Straub AC
    Circ Res; 2017 Jul; 121(2):137-148. PubMed ID: 28584062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scavenging of nitric oxide by hemoglobin in the tunica media of porcine coronary arteries.
    Kollau A; Russwurm M; Neubauer A; Rechberger G; Schmidt K; Koesling D; Fassett J; Schrammel A; Mayer B
    Nitric Oxide; 2016 Apr; 54():8-14. PubMed ID: 26805578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor.
    Beuve A
    Antioxid Redox Signal; 2017 Jan; 26(3):137-149. PubMed ID: 26906466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erectile Dysfunction in Heme-Deficient Nitric Oxide-Unresponsive Soluble Guanylate Cyclase Knock-In Mice.
    Decaluwé K; Pauwels B; Boydens C; Thoonen R; Buys ES; Brouckaert P; Van de Voorde J
    J Sex Med; 2017 Feb; 14(2):196-204. PubMed ID: 28161078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proatherosclerotic Effect of the α1-Subunit of Soluble Guanylyl Cyclase by Promoting Smooth Muscle Phenotypic Switching.
    Segura-Puimedon M; Mergia E; Al-Hasani J; Aherrahrou R; Stoelting S; Kremer F; Freyer J; Koesling D; Erdmann J; Schunkert H; de Wit C; Aherrahrou Z
    Am J Pathol; 2016 Aug; 186(8):2220-2231. PubMed ID: 27315776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide.
    Zheng X; Ying L; Liu J; Dou D; He Q; Leung SW; Man RY; Vanhoutte PM; Gao Y
    Cardiovasc Res; 2011 Jun; 90(3):565-72. PubMed ID: 21248051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of ferrochelatase impairs vascular eNOS/NO and sGC/cGMP signaling.
    Zhang B; Alruwaili N; Kandhi S; Deng W; Huang A; Wolin MS; Sun D
    PLoS One; 2018; 13(7):e0200307. PubMed ID: 29985945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide sensitive guanylyl cyclase activity decreases during cerebral postnatal development because of a reduction in heterodimerization.
    Haase N; Haase T; Seeanner M; Behrends S
    J Neurochem; 2010 Jan; 112(2):542-51. PubMed ID: 19895661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BAY 60-2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: Evidence for stable insertion of activator drugs.
    Sömmer A; Sandner P; Behrends S
    Biochem Pharmacol; 2018 Jan; 147():10-20. PubMed ID: 29155144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteasomal degradation.
    Meurer S; Pioch S; Pabst T; Opitz N; Schmidt PM; Beckhaus T; Wagner K; Matt S; Gegenbauer K; Geschka S; Karas M; Stasch JP; Schmidt HH; Müller-Esterl W
    Circ Res; 2009 Jul; 105(1):33-41. PubMed ID: 19478201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.