These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites. Chan JP; Battiston KG; Santerre JP Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683 [TBL] [Abstract][Full Text] [Related]
5. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Goh KL; Holmes DF Int J Mol Sci; 2017 Apr; 18(5):. PubMed ID: 28441344 [TBL] [Abstract][Full Text] [Related]
6. Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. Siimon K; Siimon H; Järvekülg M J Mater Sci Mater Med; 2015 Jan; 26(1):5375. PubMed ID: 25578715 [TBL] [Abstract][Full Text] [Related]
7. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Paşcu EI; Stokes J; McGuinness GB Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204 [TBL] [Abstract][Full Text] [Related]
8. SIS/aligned fibre scaffold designed to meet layered oesophageal tissue complexity and properties. Syed O; Kim JH; Keskin-Erdogan Z; Day RM; El-Fiqi A; Kim HW; Knowles JC Acta Biomater; 2019 Nov; 99():181-195. PubMed ID: 31446049 [TBL] [Abstract][Full Text] [Related]
9. Preparation of aligned poly(glycerol sebacate) fibrous membranes for anisotropic tissue engineering. Wu HJ; Hu MH; Tuan-Mu HY; Hu JJ Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():30-37. PubMed ID: 30948065 [TBL] [Abstract][Full Text] [Related]
10. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
16. Aligned nanofibers of decellularized muscle ECM support myogenic activity in primary satellite cells in vitro. Patel KH; Dunn AJ; Talovic M; Haas GJ; Marcinczyk M; Elmashhady H; Kalaf EG; Sell SA; Garg K Biomed Mater; 2019 Apr; 14(3):035010. PubMed ID: 30812025 [TBL] [Abstract][Full Text] [Related]
17. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
18. The basement membrane component of biologic scaffolds derived from extracellular matrix. Brown B; Lindberg K; Reing J; Stolz DB; Badylak SF Tissue Eng; 2006 Mar; 12(3):519-26. PubMed ID: 16579685 [TBL] [Abstract][Full Text] [Related]
19. Vascular morphogenesis of human umbilical vein endothelial cells on cell-derived macromolecular matrix microenvironment. Du P; Subbiah R; Park JH; Park K Tissue Eng Part A; 2014 Sep; 20(17-18):2365-77. PubMed ID: 24517112 [TBL] [Abstract][Full Text] [Related]
20. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Baker BM; Shah RP; Huang AH; Mauck RL Tissue Eng Part A; 2011 May; 17(9-10):1445-55. PubMed ID: 21247342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]