BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 30099247)

  • 1. Derivation and numerical profile analysis of a hierarchically formulated microscopic model of hemoglobin oxygen binding.
    Gutheil WG
    Biophys Chem; 2018 Oct; 241():38-49. PubMed ID: 30099247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of data pertaining to complex state systems by stepwise regression with reformulated parameters; application to spectroscopically monitored hemoglobin oxygen binding data.
    Gutheil WG
    Biophys Chem; 1998 Mar; 70(3):185-202. PubMed ID: 9546196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnesium(II) and zinc(II)-protoporphyrin IX's stabilize the lowest oxygen affinity state of human hemoglobin even more strongly than deoxyheme.
    Miyazaki G; Morimoto H; Yun KM; Park SY; Nakagawa A; Minagawa H; Shibayama N
    J Mol Biol; 1999 Oct; 292(5):1121-36. PubMed ID: 10512707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer.
    Nagatomo S; Nagai Y; Aki Y; Sakurai H; Imai K; Mizusawa N; Ogura T; Kitagawa T; Nagai M
    PLoS One; 2015; 10(8):e0135080. PubMed ID: 26244770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetric distribution of cooperativity in the binding cascade of normal human hemoglobin. 2. Stepwise cooperative free energy.
    Holt JM; Ackers GK
    Biochemistry; 2005 Sep; 44(36):11939-49. PubMed ID: 16142892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hill coefficient: inadequate resolution of cooperativity in human hemoglobin.
    Holt JM; Ackers GK
    Methods Enzymol; 2009; 455():193-212. PubMed ID: 19289207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron twin-coronet porphyrins as models of myoglobin and hemoglobin: amphibious electrostatic effects of overhanging hydroxyl groups for successful CO/O2 discrimination.
    Tani F; Matsu-ura M; Ariyama K; Setoyama T; Shimada T; Kobayashi S; Hayashi T; Matsuo T; Hisaeda Y; Naruta Y
    Chemistry; 2003 Feb; 9(4):862-70. PubMed ID: 12584701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of ligand binding process using binding capacity concept.
    Bordbar AK; Saadati Z; Sohrabi N
    Acta Biochim Pol; 2004; 51(4):963-70. PubMed ID: 15625568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique and independent parameters (UIP) formulation for thermodynamic models of complex protein-ligand systems.
    Gutheil WG; McKenna CE
    Biophys Chem; 1992 Dec; 45(2):171-9. PubMed ID: 1286150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxygen-binding intermediates of human hemoglobin: evaluation of their contributions to cooperativity using zinc-containing hybrids.
    Huang Y; Doyle ML; Ackers GK
    Biophys J; 1996 Oct; 71(4):2094-105. PubMed ID: 8889184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive cooperativity induces multimodal site and thermodynamic affinity distributions in multivalent proteins.
    del Mar Hernández M; José MV
    Anal Biochem; 2003 Feb; 313(2):226-33. PubMed ID: 12605859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular code for hemoglobin allostery revealed by linking the thermodynamics and kinetics of quaternary structural change. 1. Microstate linear free energy relations.
    Goldbeck RA; Esquerra RM; Holt JM; Ackers GK; Kliger DS
    Biochemistry; 2004 Sep; 43(38):12048-64. PubMed ID: 15379545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutations of human hemoglobin at residue 35beta: a residue at the intersection of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces.
    Kavanaugh JS; Weydert JA; Rogers PH; Arnone A; Hui HL; Wierzba AM; Kwiatkowski LD; Paily P; Noble RW; Bruno S; Mozzarelli A
    Protein Sci; 2001 Sep; 10(9):1847-55. PubMed ID: 11514675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic contributions to the understanding of hemoglobin function: implications for structural biology.
    Shulman RG
    IUBMB Life; 2001 Jun; 51(6):351-7. PubMed ID: 11758802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature titration: a new approach to the thermodynamics of oxygen binding to hemoglobin.
    Gryczynski Z; Gering H; Bucci E
    Anal Biochem; 1998 Jan; 255(2):176-82. PubMed ID: 9451501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of ligand binding curves on basis of mean intrinsic thermodynamic quantities.
    Bordbar AK; Dazhampanah H; Mousavi SH; Haertle T
    Int J Biol Macromol; 2007 Mar; 40(4):367-73. PubMed ID: 17123596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An allosteric theory for hemoglobin incorporating asymmetric states to test the putative molecular code for cooperativity.
    Edelstein SJ
    J Mol Biol; 1996 Apr; 257(4):737-44. PubMed ID: 8636978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extended Monod-Wyman-Changeaux-model expressed in terms of the Herzfeld-Stanley formalism applied to oxygen and carbonmonoxide binding curves of hemoglobin trout IV.
    Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1989 Apr; 55(4):691-701. PubMed ID: 2720067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study.
    Dellarole M; Roumestand C; Royer C; Lecomte JT
    Biochim Biophys Acta; 2013 Sep; 1834(9):1910-22. PubMed ID: 23619242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen binding by single crystals of hemoglobin: the problem of cooperativity and inequivalence of alpha and beta subunits.
    Bettati S; Mozzarelli A; Rossi GL; Tsuneshige A; Yonetani T; Eaton WA; Henry ER
    Proteins; 1996 Aug; 25(4):425-37. PubMed ID: 8865338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.