BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30099263)

  • 1. The origins of cortical multisensory dynamics: Evidence from human infants.
    Werchan DM; Baumgartner HA; Lewkowicz DJ; Amso D
    Dev Cogn Neurosci; 2018 Nov; 34():75-81. PubMed ID: 30099263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of auditory input on activations in infant diverse cortical regions during audiovisual processing.
    Watanabe H; Homae F; Nakano T; Tsuzuki D; Enkhtur L; Nemoto K; Dan I; Taga G
    Hum Brain Mapp; 2013 Mar; 34(3):543-65. PubMed ID: 22102331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMR-adaptation indicates selectivity to audiovisual content congruency in distributed clusters in human superior temporal cortex.
    van Atteveldt NM; Blau VC; Blomert L; Goebel R
    BMC Neurosci; 2010 Feb; 11():11. PubMed ID: 20122260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synchrony-dependent influence of sounds on activity in visual cortex measured using functional near-infrared spectroscopy (fNIRS).
    Wiggins IM; Hartley DE
    PLoS One; 2015; 10(3):e0122862. PubMed ID: 25826284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants.
    Boldin AM; Geiger R; Emberson LL
    Dev Psychobiol; 2018 Jul; 60(5):544-556. PubMed ID: 29687654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisensory interactions within human primary cortices revealed by BOLD dynamics.
    Martuzzi R; Murray MM; Michel CM; Thiran JP; Maeder PP; Clarke S; Meuli RA
    Cereb Cortex; 2007 Jul; 17(7):1672-9. PubMed ID: 16968869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound-induced enhancement of low-intensity vision: multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity.
    Noesselt T; Tyll S; Boehler CN; Budinger E; Heinze HJ; Driver J
    J Neurosci; 2010 Oct; 30(41):13609-23. PubMed ID: 20943902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossmodal association of auditory and visual material properties in infants.
    Ujiie Y; Yamashita W; Fujisaki W; Kanazawa S; Yamaguchi MK
    Sci Rep; 2018 Jun; 8(1):9301. PubMed ID: 29915205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Audiovisual temporal fusion in 6-month-old infants.
    Kopp F
    Dev Cogn Neurosci; 2014 Jul; 9():56-67. PubMed ID: 24525177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.
    Butler AJ; James TW; James KH
    J Cogn Neurosci; 2011 Nov; 23(11):3515-28. PubMed ID: 21452947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Audiovisual Processing is Abnormal in Parkinson's Disease and Correlates with Freezing of Gait and Disease Duration.
    Fearon C; Butler JS; Newman L; Lynch T; Reilly RB
    J Parkinsons Dis; 2015; 5(4):925-36. PubMed ID: 26485427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisensory integration during short-term music reading training enhances both uni- and multisensory cortical processing.
    Paraskevopoulos E; Kuchenbuch A; Herholz SC; Pantev C
    J Cogn Neurosci; 2014 Oct; 26(10):2224-38. PubMed ID: 24669793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An imbalance of excitation and inhibition in the multisensory cortex impairs the temporal acuity of audiovisual processing and perception.
    Schormans AL; Allman BL
    Cereb Cortex; 2023 Sep; 33(18):9937-9953. PubMed ID: 37464944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of temporal asynchrony on multisensory integration in the processing of asynchronous audio-visual stimuli of real-world events: an event-related potential study.
    Liu B; Jin Z; Wang Z; Gong C
    Neuroscience; 2011 Mar; 176():254-64. PubMed ID: 21185358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisensory Competition Is Modulated by Sensory Pathway Interactions with Fronto-Sensorimotor and Default-Mode Network Regions.
    Huang S; Li Y; Zhang W; Zhang B; Liu X; Mo L; Chen Q
    J Neurosci; 2015 Jun; 35(24):9064-77. PubMed ID: 26085631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left Motor δ Oscillations Reflect Asynchrony Detection in Multisensory Speech Perception.
    Biau E; Schultz BG; Gunter TC; Kotz SA
    J Neurosci; 2022 Mar; 42(11):2313-2326. PubMed ID: 35086905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisensory perception reflects individual differences in processing temporal correlations.
    Nidiffer AR; Diederich A; Ramachandran R; Wallace MT
    Sci Rep; 2018 Sep; 8(1):14483. PubMed ID: 30262826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation.
    Mercier MR; Molholm S; Fiebelkorn IC; Butler JS; Schwartz TH; Foxe JJ
    J Neurosci; 2015 Jun; 35(22):8546-57. PubMed ID: 26041921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Computational Role for Top-Down Modulation from Frontal Cortex in Infancy.
    Jaffe-Dax S; Boldin AM; Daw ND; Emberson LL
    J Cogn Neurosci; 2020 Mar; 32(3):508-514. PubMed ID: 31682568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of multisensory learning on perceptual and lexical processing of unisensory Morse code.
    Junker FB; Schlaffke L; Axmacher N; Schmidt-Wilcke T
    Brain Res; 2021 Mar; 1755():147259. PubMed ID: 33422535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.