BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30099314)

  • 1. Application of terahertz spectroscopy and chemometrics for discrimination of transgenic camellia oil.
    Liu J; Fan L; Liu Y; Mao L; Kan J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():165-169. PubMed ID: 30099314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Discrimination of pressed and extracted camellia oils by Vis/NIR spectra combined with UVE-PLS-LDA].
    Wen ZC; Sun T; Geng X; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2354-8. PubMed ID: 24369630
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Shi T; Zhu M; Chen Y; Yan X; Chen Q; Wu X; Lin J; Xie M
    Food Chem; 2018 Mar; 242():308-315. PubMed ID: 29037694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of camellia oil using FT-IR spectroscopy and chemometrics based on both isolated unsaponifiables and vegetable oils.
    He W; Lei T
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117839. PubMed ID: 31812560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of genetically modified sugar beets based on terahertz spectroscopy.
    Chen T; Li Z; Yin X; Hu F; Hu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():586-90. PubMed ID: 26436847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics.
    Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ
    Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics.
    Ye Q; Meng X
    Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans.
    Wei X; Zheng W; Zhu S; Zhou S; Wu W; Xie Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118453. PubMed ID: 32408224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Classification and Quantification of Camellia (
    Han J; Sun R; Zeng X; Zhang J; Xing R; Sun C; Chen Y
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32349404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints.
    Shi T; Wu G; Jin Q; Wang X
    Food Chem; 2021 Aug; 352():129422. PubMed ID: 33714164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys.
    Liu W; Zhang Y; Yang S; Han D
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 196():123-130. PubMed ID: 29444494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrimination of corn variety using Terahertz spectroscopy combined with chemometrics methods.
    Yang S; Li C; Mei Y; Liu W; Liu R; Chen W; Han D; Xu K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119475. PubMed ID: 33530032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of transgenic soybean seeds by terahertz spectroscopy.
    Liu W; Liu C; Chen F; Yang J; Zheng L
    Sci Rep; 2016 Oct; 6():35799. PubMed ID: 27782205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.
    Liu W; Liu C; Hu X; Yang J; Zheng L
    Food Chem; 2016 Nov; 210():415-21. PubMed ID: 27211665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics.
    Liu W; Liu C; Yu J; Zhang Y; Li J; Chen Y; Zheng L
    Food Chem; 2018 Jun; 251():86-92. PubMed ID: 29426428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of fatty acid composition in camellia oil by
    Zhu M; Shi T; Chen Y; Luo S; Leng T; Wang Y; Guo C; Xie M
    Food Chem; 2019 May; 279():339-346. PubMed ID: 30611499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics.
    Xu W; Xie L; Ye Z; Gao W; Yao Y; Chen M; Qin J; Ying Y
    Sci Rep; 2015 Jul; 5():11115. PubMed ID: 26154950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent analysis of excitation-emission matrix fluorescence fingerprint to identify and quantify adulteration in camellia oil based on machine learning.
    Chen AQ; Wu HL; Wang T; Wang XZ; Sun HB; Yu RQ
    Talanta; 2023 Jan; 251():123733. PubMed ID: 35940112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.
    Santana FB; Gontijo LC; Mitsutake H; Mazivila SJ; Souza LM; Borges Neto W
    Food Chem; 2016 Oct; 209():228-33. PubMed ID: 27173556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition Profiling and Authenticity Assessment of Camellia Oil Using High Field and Low Field
    Xing M; Wang S; Lin J; Xia F; Feng J; Shen G
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.