These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30099561)

  • 41. Bayesian methods for chromosome dosimetry following a criticality accident.
    Brame RS; Groer PG
    Radiat Prot Dosimetry; 2003; 104(1):61-3. PubMed ID: 12862245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry.
    Murawski Ł; Zielczyński M; Golnik N; Gryziński MA
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):130-3. PubMed ID: 24324250
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of environmental public exposure from a hypothetical nuclear accident for Unit-1 Bushehr nuclear power plant.
    Sohrabi M; Ghasemi M; Amrollahi R; Khamooshi C; Parsouzi Z
    Radiat Environ Biophys; 2013 May; 52(2):235-44. PubMed ID: 23358597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A review of radiation accidents involving whole body exposure and the relevance to the LD50/60 for man.
    Baverstock KF; Ash PJ
    Br J Radiol; 1983 Nov; 56(671):837-44. PubMed ID: 6626874
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increased occupational radiation doses: nuclear fuel cycle.
    Bouville A; Kryuchkov V
    Health Phys; 2014 Feb; 106(2):259-71. PubMed ID: 24378501
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.
    Raisali G; Davilu H; Haghighishad A; Khodadadi R; Sabet M
    Radiat Prot Dosimetry; 2006; 121(4):382-90. PubMed ID: 16785243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CHARACTERIZATION OF FLUORESCENT NUCLEAR TRACK DETECTORS AS CRITICALITY DOSIMETERS II.
    Harrison J; Moreno B; Van Hoey O; Mihailescu LC; Vanhavere F; Million M; Fomenko V; Akselrod M
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):201-205. PubMed ID: 29069460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Locating tritium sources in a research reactor building.
    Fukui M
    Health Phys; 2005 Oct; 89(4):303-14. PubMed ID: 16155451
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical dosimetry system for criticality accidents.
    Miljanić S; Ilijas B
    Radiat Prot Dosimetry; 2004; 110(1-4):477-81. PubMed ID: 15353694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of neutron and gamma-ray streaming along the maze of NRCAM thallium production target room.
    Raisali G; Hajiloo N; Hamidi S; Aslani G
    Appl Radiat Isot; 2006 Aug; 64(8):940-7. PubMed ID: 16713275
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Radiological consequence analysis for hypothetical accidental release from Nigerian Research Reactor-1.
    Simon J; Ibrahim YV; Adeyemo DJ; Garba NN; Asuku A; Bello S; Ibikunle IK
    Appl Radiat Isot; 2022 Aug; 186():110308. PubMed ID: 35675740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Analysis of decay dose rates and dose management in the National Ignition Facility.
    Khater H; Brereton S; Dauffy L; Hall J; Hansen L; Kim S; Kohut T; Pohl B; Sitaraman S; Verbeke J; Young M
    Health Phys; 2013 Jun; 104(6):580-8. PubMed ID: 23629063
    [TBL] [Abstract][Full Text] [Related]  

  • 53. External dose to a Japanese tourist from the Chernobyl reactor accident.
    Nakajima T
    Health Phys; 1987 Oct; 53(4):405-7. PubMed ID: 2820900
    [No Abstract]   [Full Text] [Related]  

  • 54. STUDIES OF COSMIC-RAY MUONS AND NEUTRONS IN A FIVE-STORY CONCRETE BUILDING.
    Chen WL; Sheu RJ
    Radiat Prot Dosimetry; 2018 May; 179(3):233-243. PubMed ID: 29165652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurements of the neutron spectrum in transit to Mars on the Mars Science Laboratory.
    Köhler J; Ehresmann B; Zeitlin C; Wimmer-Schweingruber RF; Hassler DM; Reitz G; Brinza DE; Appel J; Böttcher S; Böhm E; Burmeister S; Guo J; Lohf H; Martin C; Posner A; Rafkin S
    Life Sci Space Res (Amst); 2015 Apr; 5():6-12. PubMed ID: 26177845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. INITIAL EVALUATION OF INDIVIDUAL DOSES IN THE EARLY PHASE OF A NUCLEAR REACTOR ACCIDENT BASED ON IN-VIVO MONITORING DATA AND SIMULATED RADIOLOGICAL CONSEQUENCES.
    Challeton-de Vathaire C; Quentric E; Didier D; Blanchardon E; Davesne E; Rannou A; Agarande M; Renaud-Salis V; Franck D
    Radiat Prot Dosimetry; 2019 Nov; 185(1):96-108. PubMed ID: 30590730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dose evaluation based on 24Na activity in the human body at the JCO criticality accident in Tokai-mura.
    Momose T; Tsujimura N; Tasaki T; Kanai K; Kurihara O; Hayashi N; Shinohara K
    J Radiat Res; 2001 Sep; 42 Suppl():S95-105. PubMed ID: 11791757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Worker exposure for at-reactor management of spent nuclear fuel.
    Weck PF
    Radiat Prot Dosimetry; 2013 Sep; 156(3):386-93. PubMed ID: 23564883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calculation of the absorbed dose for the overexposed patients at the JCO criticality accident in Tokai-mura.
    Ishigure N; Endo A; Yamaguchi Y; Kawachi K
    J Radiat Res; 2001 Sep; 42 Suppl():S137-48. PubMed ID: 11791747
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dose assessment from the UA-RR-1 reactor channel.
    Gomaa MA
    Health Phys; 1970 Aug; 19(2):323. PubMed ID: 5513492
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.