BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30099712)

  • 21. Fine particle attachment to quartz sand in the presence of multiple interacting dissolved components.
    Rastghalam ZS; Cheng T; Freake B
    Sci Total Environ; 2018 Dec; 645():499-508. PubMed ID: 30029125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-transport of phenanthrene and pentachlorophenol by natural soil nanoparticles through saturated sand columns.
    Liu F; Xu B; He Y; Brookes PC; Xu J
    Environ Pollut; 2019 Jun; 249():406-413. PubMed ID: 30913439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of TiO2 nanoparticles in soil in the presence of surfactants.
    Sun P; Zhang K; Fang J; Lin D; Wang M; Han J
    Sci Total Environ; 2015 Sep; 527-528():420-8. PubMed ID: 25981940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Blocking effect of colloids on arsenate adsorption during co-transport through saturated sand columns.
    Ma J; Guo H; Lei M; Wan X; Zhang H; Feng X; Wei R; Tian L; Han X
    Environ Pollut; 2016 Jun; 213():638-647. PubMed ID: 27017140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating.
    Han Y; Hwang G; Kim D; Bradford SA; Lee B; Eom I; Kim PJ; Choi SQ; Kim H
    Water Res; 2016 Mar; 90():247-257. PubMed ID: 26741396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe
    Tong M; He L; Rong H; Li M; Kim H
    Water Res; 2020 Feb; 169():115284. PubMed ID: 31739235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of phosphate and solution pH on the mobility of ZnO nanoparticles in saturated sand.
    Li L; Schuster M
    Sci Total Environ; 2014 Feb; 472():971-8. PubMed ID: 24355393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand.
    Wang D; Zhang W; Zhou D
    Environ Sci Technol; 2013 May; 47(10):5154-61. PubMed ID: 23614641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacteriophage MS2 and titanium dioxide heteroaggregation: Effects of ambient light and the presence of quartz sand.
    Syngouna VI; Chrysikopoulos CV
    Colloids Surf B Biointerfaces; 2019 Aug; 180():281-288. PubMed ID: 31063885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation.
    Wang D; Jin Y; Jaisi DP
    J Contam Hydrol; 2015 Nov; 182():194-209. PubMed ID: 26409895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns.
    Sun P; Shijirbaatar A; Fang J; Owens G; Lin D; Zhang K
    Sci Total Environ; 2015 Feb; 505():189-98. PubMed ID: 25461021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH.
    Wu Y; Cheng T
    Sci Total Environ; 2016 Jan; 541():579-589. PubMed ID: 26439650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced retention of bacteria by TiO2 nanoparticles in saturated porous media.
    Gentile GJ; Fidalgo de Cortalezzi MM
    J Contam Hydrol; 2016 Aug; 191():66-75. PubMed ID: 27258326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter.
    Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport and numerical simulation of Cu
    Song S; Song Y; Shi M; Hu Z; Li T; Lin S
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35827-35837. PubMed ID: 31705411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of non-DLVO interactions on the co-transport of levofloxacin and titanium dioxide nanoparticles in porous media.
    Cui Y; Wu M; Lu G; Cheng Z; Chen M; Hao Y; Mo C; Li Q; Wu J; Wu J; Hu BX
    Environ Pollut; 2024 Jun; 351():124079. PubMed ID: 38692390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of extracellular polymeric substances from two microbes by TiO
    Gao X; Middepogu A; Deng R; Liu J; Hao Z; Lin D
    Sci Total Environ; 2019 Dec; 694():133778. PubMed ID: 31756817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.
    Wang D; Zhang W; Hao X; Zhou D
    Environ Sci Technol; 2013 Jan; 47(2):821-8. PubMed ID: 23249307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.