These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30099832)

  • 1. Pushing the limit: Resilience of an Arctic copepod to environmental fluctuations.
    Kvile KØ; Ashjian C; Feng Z; Zhang J; Ji R
    Glob Chang Biol; 2018 Nov; 24(11):5426-5439. PubMed ID: 30099832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean.
    Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ
    Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeographic responses of the copepod Calanus glacialis to a changing Arctic marine environment.
    Feng Z; Ji R; Ashjian C; Campbell R; Zhang J
    Glob Chang Biol; 2018 Jan; 24(1):e159-e170. PubMed ID: 28869698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus.
    Toxværd K; Dinh KV; Henriksen O; Hjorth M; Nielsen TG
    Aquat Toxicol; 2019 Dec; 217():105332. PubMed ID: 31698182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus.
    Weydmann A; Walczowski W; Carstensen J; Kwaśniewski S
    Glob Chang Biol; 2018 Jan; 24(1):172-183. PubMed ID: 28801968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs.
    Tarling GA; Freer JJ; Banas NS; Belcher A; Blackwell M; Castellani C; Cook KB; Cottier FR; Daase M; Johnson ML; Last KS; Lindeque PK; Mayor DJ; Mitchell E; Parry HE; Speirs DC; Stowasser G; Wootton M
    Ambio; 2022 Feb; 51(2):333-344. PubMed ID: 34845624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pan-Arctic Depth Distribution of Diapausing
    Kvile KØ; Ashjian C; Ji R
    Biol Bull; 2019 Oct; 237(2):76-89. PubMed ID: 31714854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice.
    Lewis CN; Brown KA; Edwards LA; Cooper G; Findlay HS
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):E4960-7. PubMed ID: 24297880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.
    Garzke J; Ismar SMH; Sommer U
    Oecologia; 2015 Mar; 177(3):849-860. PubMed ID: 25413864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative.
    Pućko M; Burt A; Walkusz W; Wang F; Macdonald RW; Rysgaard S; Barber DG; Tremblay JÉ; Stern GA
    Environ Sci Technol; 2014 Jul; 48(13):7280-8. PubMed ID: 24901673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of Arctic zooplankton seasonal migrations for α-hexachlorocyclohexane bioaccumulation dynamics.
    Pućko M; Walkusz W; Macdonald RW; Barber DG; Fuchs C; Stern GA
    Environ Sci Technol; 2013 May; 47(9):4155-63. PubMed ID: 23570325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decadal decline of dominant copepod species in the North Sea is associated with ocean warming: Importance of marine heatwaves.
    Semmouri I; De Schamphelaere KAC; Mortelmans J; Mees J; Asselman J; Janssen CR
    Mar Pollut Bull; 2023 Aug; 193():115159. PubMed ID: 37329739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetics redraws pelagic biogeography of
    Choquet M; Hatlebakk M; Dhanasiri AKS; Kosobokova K; Smolina I; Søreide JE; Svensen C; Melle W; Kwaśniewski S; Eiane K; Daase M; Tverberg V; Skreslet S; Bucklin A; Hoarau G
    Biol Lett; 2017 Dec; 13(12):. PubMed ID: 29263132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating pyrene toxicity on Arctic key copepod species Calanus hyperboreus.
    Nørregaard RD; Nielsen TG; Møller EF; Strand J; Espersen L; Møhl M
    Ecotoxicology; 2014 Mar; 23(2):163-74. PubMed ID: 24337827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joint species distribution modeling reveals a changing prey landscape for North Pacific right whales on the Bering shelf.
    Wright DL; Kimmel DG; Roberson N; Strausz D
    Ecol Appl; 2023 Dec; 33(8):e2925. PubMed ID: 37792562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea.
    Renner M; Salo S; Eisner LB; Ressler PH; Ladd C; Kuletz KJ; Santora JA; Piatt JF; Drew GS; Hunt GL
    Biol Lett; 2016 Sep; 12(9):. PubMed ID: 27651532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of elevated CO₂ and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus.
    Hildebrandt N; Niehoff B; Sartoris FJ
    Mar Pollut Bull; 2014 Mar; 80(1-2):59-70. PubMed ID: 24529340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.