BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30099846)

  • 1. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ClaR--a novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Stasiak-Różańska L; Cieśla J; Bardowski J
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):337-47. PubMed ID: 25239037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CcpA-dependent carbohydrate catabolite repression regulates galactose metabolism in Streptococcus oligofermentans.
    Cai J; Tong H; Qi F; Dong X
    J Bacteriol; 2012 Aug; 194(15):3824-32. PubMed ID: 22609925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative lactose catabolic pathway in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Kok J; Renault P; Bardowski J
    Appl Environ Microbiol; 2005 Oct; 71(10):6060-9. PubMed ID: 16204522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards enhanced galactose utilization by Lactococcus lactis.
    Neves AR; Pool WA; Solopova A; Kok J; Santos H; Kuipers OP
    Appl Environ Microbiol; 2010 Nov; 76(21):7048-60. PubMed ID: 20817811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.
    Andersson U; Molenaar D; Rådström P; de Vos WM
    Syst Appl Microbiol; 2005 Apr; 28(3):187-95. PubMed ID: 15900965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus.
    Vaughan EE; van den Bogaard PT; Catzeddu P; Kuipers OP; de Vos WM
    J Bacteriol; 2001 Feb; 183(4):1184-94. PubMed ID: 11157930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes.
    Eaton TJ; Shearman CA; Gasson MJ
    J Gen Microbiol; 1993 Jul; 139(7):1495-501. PubMed ID: 8371112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose.
    Chandrapati S; O'Sullivan DJ
    FEMS Microbiol Lett; 1999 Jan; 170(1):191-8. PubMed ID: 9919668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis.
    Xiao H; Bang-Berthelsen CH; Jensen PR; Solem C
    Appl Environ Microbiol; 2021 Jul; 87(16):e0077921. PubMed ID: 34105983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.
    Grossiord BP; Luesink EJ; Vaughan EE; Arnaud A; de Vos WM
    J Bacteriol; 2003 Feb; 185(3):870-8. PubMed ID: 12533462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis.
    Xiong ZQ; Kong LH; Meng HL; Cui JM; Xia YJ; Wang SJ; Ai LZ
    J Ind Microbiol Biotechnol; 2019 May; 46(5):751-758. PubMed ID: 30715626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
    Zeng L; Das S; Burne RA
    J Bacteriol; 2010 May; 192(9):2434-44. PubMed ID: 20190045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional characterisation of cellobiose and lactose transport systems in Lactococcus lactis IL1403.
    Kowalczyk M; Cocaign-Bousquet M; Loubiere P; Bardowski J
    Arch Microbiol; 2008 Mar; 189(3):187-96. PubMed ID: 17909747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of sugar catabolism in Lactococcus lactis.
    Kowalczyk M; Bardowski J
    Crit Rev Microbiol; 2007; 33(1):1-13. PubMed ID: 17453928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.