These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30100287)

  • 21. Energy cost, mechanical work and muscular efficiency in swing-through gait with elbow crutches.
    Thys H; Willems PA; Saels P
    J Biomech; 1996 Nov; 29(11):1473-82. PubMed ID: 8894928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial weight-bearing gait using conventional assistive devices.
    Youdas JW; Kotajarvi BJ; Padgett DJ; Kaufman KR
    Arch Phys Med Rehabil; 2005 Mar; 86(3):394-8. PubMed ID: 15759217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating energy expenditure for different assistive devices in the school setting.
    Lephart K; Utsey C; Wild DL; Fisher SR
    Pediatr Phys Ther; 2014; 26(3):354-9. PubMed ID: 24819680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Patient Preference and Physical Demand for Hands-Free Single Crutch vs Standard Axillary Crutches in Foot and Ankle Patients.
    Martin KD; Unangst AM; Huh J; Chisholm J
    Foot Ankle Int; 2019 Oct; 40(10):1203-1208. PubMed ID: 31375043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
    Zhang Y; Liu G; Xie S; Liger A
    Assist Technol; 2011; 23(4):225-31. PubMed ID: 22256671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle coordination of support, progression and balance during stair ambulation.
    Lin YC; Fok LA; Schache AG; Pandy MG
    J Biomech; 2015 Jan; 48(2):340-7. PubMed ID: 25498364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of assistive devices on the oxygen cost, cardiovascular stress, and perception of nonweight-bearing ambulation.
    Holder CG; Haskvitz EM; Weltman A
    J Orthop Sports Phys Ther; 1993 Oct; 18(4):537-42. PubMed ID: 8220412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of walking devices on kinematics in patients with spastic bilateral cerebral palsy.
    Krautwurst BK; Dreher T; Wolf SI
    Gait Posture; 2016 May; 46():184-7. PubMed ID: 27131199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy Efficiency in Children With Myelomeningocele During Acute Use of Assistive Devices: A Pilot Study.
    Sansom JK; Ulrich BD
    Adapt Phys Activ Q; 2018 Jan; 35(1):57-75. PubMed ID: 29313712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of lower extremity joint powers in successful stair ambulation.
    Wilken JM; Sinitski EH; Bagg EA
    Gait Posture; 2011 May; 34(1):142-4. PubMed ID: 21482112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Dominant and Nondominant Limb Immobilization on Muscle Activation and Physical Demand during Ambulation with Axillary Crutches.
    Bellenfant KB; Robbins GL; Rogers RR; Kopec TJ; Ballmann CG
    J Funct Morphol Kinesiol; 2021 Feb; 6(1):. PubMed ID: 33572237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Hip and Low Back Loads between Normal Gait, Axillary Crutch Ambulation and Walking with a Hands-free Crutch in a Healthy Population.
    Orishimo K; Shapira A; Kremenic I; McHugh M; Nicholas S
    Int J Sports Phys Ther; 2021; 16(6):1454-1458. PubMed ID: 34909252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implications of Walking Aid Selection for Nonweightbearing Ambulation on Stance Limb Plantar Force, Walking Speed, Perceived Exertion, and Device Preference in Healthy Adults 50 Years of Age and Older.
    Kingston DC; Ferwerda S; Fontaine C; Keeping M; Stewart J; Ward R; Zapski J; Collins K; Essien SK; Zucker-Levin AR
    Foot Ankle Orthop; 2021 Jan; 6(1):2473011421998939. PubMed ID: 35097435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanics of ambulation with standard and spring-loaded crutches.
    Segura A; Piazza SJ
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1159-63. PubMed ID: 17826462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative biomechanical gait analysis of patients with central cord syndrome walking with one crutch and two crutches.
    Gil-Agudo A; Pérez-Rizo E; Del Ama-Espinosa A; Crespo-Ruiz B; Pérez-Nombela S; Sánchez-Ramos A
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):551-7. PubMed ID: 19457601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy cost of ambulation with crutches.
    Fisher SV; Patterson RP
    Arch Phys Med Rehabil; 1981 Jun; 62(6):250-6. PubMed ID: 7235917
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ambulation of children with myelomeningocele: parapodium versus parapodium with Orlau swivel modification.
    Lough LK; Nielsen DH
    Dev Med Child Neurol; 1986 Aug; 28(4):489-97. PubMed ID: 3758502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of spatiotemporal and energy cost of the use of 3 different walkers and unassisted walking in older adults.
    Protas EJ; Raines ML; Tissier S
    Arch Phys Med Rehabil; 2007 Jun; 88(6):768-73. PubMed ID: 17532900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy cost of ambulation with different methods of foot and ankle immobilization.
    Fowler PT; Botte MJ; Mathewson JW; Speth SR; Byrne TP; Sutherland DH
    J Orthop Res; 1993 May; 11(3):416-21. PubMed ID: 8326448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feature reduction and multi-classification of different assistive devices according to the gait pattern.
    Martins M; Santos C; Costa L; Frizera A
    Disabil Rehabil Assist Technol; 2016; 11(3):202-18. PubMed ID: 26337072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.